Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.225
Filter
1.
Front Immunol ; 15: 1341745, 2024.
Article in English | MEDLINE | ID: mdl-38765012

ABSTRACT

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Subject(s)
Integrins , Lymphocyte Activation , Animals , Mice , Integrins/metabolism , Integrins/genetics , Lymphocyte Activation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Knockout , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Vestibular Diseases/metabolism , Face/abnormalities , Humans , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Signal Transduction , Gene Expression Regulation , Abnormalities, Multiple , Hematologic Diseases , Myeloid-Lymphoid Leukemia Protein
2.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775840

ABSTRACT

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Subject(s)
Homozygote , Opportunistic Infections , Humans , Male , Young Adult , Jurkat Cells , Lymphocyte Activation/genetics , Opportunistic Infections/genetics , Opportunistic Infections/immunology , Pedigree , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Recurrence , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
3.
Sci Rep ; 14(1): 7066, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528023

ABSTRACT

Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen. Previous studies have shown different roles of Rad18 in vivo and in tumorigenesis. Here, we show that B cells induce Rad18 expression upon proliferation induction. We have therefore analysed the role of Rad18 in B cell activation as well as in B cell lymphomagenesis mediated by an Eµ-Myc transgene. We find no activation defects or survival differences between Rad18 WT mice and two different models of Rad18 deficient tumour mice. Also, tumour subtypes do not differ between the mouse models. Accordingly, functions of Rad18 in B cell activation and tumorigenesis may be compensated for by other pathways in B cells.


Subject(s)
Lymphocyte Activation , Neoplasms , Ubiquitin-Protein Ligases , Animals , Mice , Carcinogenesis/genetics , DNA Damage , DNA Repair , DNA Replication , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , DNA-Binding Proteins/metabolism , B-Lymphocytes/metabolism , Lymphocyte Activation/genetics
4.
Molecules ; 29(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542966

ABSTRACT

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a pivotal immune checkpoint receptor, playing a crucial role in modulating T-cell activation. In this study, we delved into the underlying mechanism by which a common mutation, G199R, in the cytoplasmic domain of CTLA-4 impacts its inhibitory function. Utilizing nuclear magnetic resonance (NMR) spectroscopy and biochemical techniques, we mapped the conformational changes induced by this mutation and investigated its role in CTLA-4 activity. Our findings reveal that this mutation leads to a distinct conformational alteration, enhancing protein-membrane interactions. Moreover, functional assays demonstrated an improved capacity of the G199R mutant to downregulate T-cell activation, underscoring its potential role in immune-related disorders. These results not only enhance our understanding of CTLA-4 regulatory mechanisms but also provide insights for targeted therapeutic strategies addressing immune dysregulation linked to CTLA-4 mutations.


Subject(s)
Cell Communication , Lymphocyte Activation , CTLA-4 Antigen/genetics , Mutation , Lymphocyte Activation/genetics
5.
Cell Mol Immunol ; 21(4): 362-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374404

ABSTRACT

Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites. In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells, we performed a comprehensive genome-scale CRISPR screening of cancer cells. We found that four molecules belonging to the butyrophilin (BTN) family, specifically BTN2A1, BTN3A1, BTN3A2, and BTN3A3, are critically important and play unique, nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells. The coordinated function of these BTN molecules was driven by synchronized gene expression, which was regulated by IFN-γ signaling and the RFX complex. Additionally, an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells. Through our research, we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells. Moreover, our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity.


Subject(s)
Neoplasms , T-Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Butyrophilins/genetics , Butyrophilins/metabolism , Lymphocyte Activation/genetics , Cell Death
6.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141764

ABSTRACT

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Subject(s)
Antigens, Differentiation, Myelomonocytic , Ligands , Lymphocyte Activation , T-Lymphocytes , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Cell Polarity/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Protein Binding , Signal Transduction , T-Lymphocytes/immunology , Humans
7.
Arthritis Res Ther ; 25(1): 206, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858140

ABSTRACT

BACKGROUND: Circular RNAs are involved in autoimmune disease pathogenesis. Our previous study indicated that circPTPN22 is involved in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the underlying mechanisms remain unclear. METHODS: First, the expression of circPTPN22 was detected by real-time PCR and western blotting. After overexpression or knockdown of circPTPN22, the proliferation of Jurkat cells was detected by the CCK-8 assay, and the apoptosis of Jurkat cells was detected by flow cytometry. In addition, the relationship between circPTPN22-miR-4689-S1PR1 was confirmed by bioinformatic analyses, fluorescence in situ hybridization assays, RNA-binding protein immunoprecipitation, and dual luciferase reporter assays. RESULTS: We found that circPTPN22 expression was downregulated in the PBMCs of SLE patients compared to those of healthy controls. Overexpression of circPTPN22 increased proliferation and inhibited apoptosis of Jurkat T cells, whereas knockdown of circPTPN22 exerted the opposite effects. CircPTPN22 acts as a miR-4689 sponge, and S1PR1 is a direct target of miR-4689. Importantly, the circPTPN22/miR-4689/S1PR1 axis inhibited the secretion of TNF-α and IL-6 in Jurkat T cells. CONCLUSIONS: CircPTPN22 acts as a miR-4689 sponge to regulate T-cell activation by targeting S1PR1, providing a novel mechanism for the pathogenesis of SLE.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , RNA, Circular , Sphingosine-1-Phosphate Receptors , T-Lymphocytes , Humans , In Situ Hybridization, Fluorescence , Jurkat Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , RNA, Circular/genetics , RNA, Circular/immunology , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/immunology , T-Lymphocytes/immunology
8.
Nat Commun ; 14(1): 6295, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813864

ABSTRACT

Genetic engineering of immune cells has opened new avenues for improving their functionality but it remains a challenge to pinpoint which genes or combination of genes are the most beneficial to target. Here, we conduct High Multiplicity of Perturbations and Cellular Indexing of Transcriptomes and Epitopes (HMPCITE-seq) to find combinations of genes whose joint targeting improves antigen-presenting cell activity and enhances their ability to activate T cells. Specifically, we perform two genome-wide CRISPR screens in bone marrow dendritic cells and identify negative regulators of CD86, that participate in the co-stimulation programs, including Chd4, Stat5b, Egr2, Med12, and positive regulators of PD-L1, that participate in the co-inhibitory programs, including Sptlc2, Nckap1l, and Pi4kb. To identify the genetic interactions between top-ranked genes and find superior combinations to target, we perform high-order Perturb-Seq experiments and we show that targeting both Cebpb and Med12 results in a better phenotype compared to the single perturbations or other combinations of perturbations.


Subject(s)
Lymphocyte Activation , T-Lymphocytes , Lymphocyte Activation/genetics , Transcription Factors , Transcriptome/genetics , Immunity, Innate/genetics
9.
Nat Immunol ; 24(9): 1565-1578, 2023 09.
Article in English | MEDLINE | ID: mdl-37580605

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Clone Cells/metabolism , Lymphocyte Activation/genetics , Single-Cell Analysis
10.
Immunol Cell Biol ; 101(5): 397-411, 2023 05.
Article in English | MEDLINE | ID: mdl-36760028

ABSTRACT

Childhood is a critical period of immune development. During this time, naïve CD4 (nCD4) T cells undergo programmed cell differentiation, mediated by epigenetic changes, in response to external stimuli leading to a baseline homeostatic state that may determine lifelong disease risk. However, the ontogeny of epigenetic signatures associated with CD4 T cell activation during key developmental periods are yet to be described. We investigated genome-wide DNA methylation (DNAm) changes associated with nCD4 T activation following 72 h culture in media+anti-CD3/CD28 beads in healthy infants (aged 12 months, n = 18) and adolescents (aged 10-15 years, n = 15). We integrated these data with transcriptomic and cytokine profiling from the same samples. nCD4 T cells from both age groups show similar extensive epigenetic reprogramming following activation, with the majority of genes involved in the T cell receptor signaling pathway associated with differential methylation. Additionally, we identified differentially methylated probes showing age-specific responses, that is, responses in only infants or adolescents, including within a cluster of T cell receptor (TCR) genes. These encoded several TCR alpha joining (TRAJ), and TCR alpha variable (TRAV) genes. Cytokine data analysis following stimulation revealed enhanced release of IFN-γ, IL-2 and IL-10, in nCD4 T cells from adolescents compared with infants. Overlapping differential methylation and cytokine responses identified four probes potentially underpinning these age-specific responses. We show that DNAm in nCD4T cells in response to activation is dynamic in infancy and adolescence, with additional evidence for age-specific effects potentially driving variation in cytokine responses between these ages.


Subject(s)
CD4-Positive T-Lymphocytes , Epigenomics , Humans , Infant , Adolescent , Child , Cytokines/metabolism , CD4 Antigens/metabolism , Lymphocyte Activation/genetics , CD28 Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Age Factors
11.
Front Immunol ; 14: 1304798, 2023.
Article in English | MEDLINE | ID: mdl-38250071

ABSTRACT

Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We identified that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only an enrichment of effector-like Tregs, but also activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases , CD4-Positive T-Lymphocytes , Humans , Lymphocyte Activation/genetics , T-Lymphocytes, Regulatory , Histocompatibility Antigens Class II , Cell Differentiation
12.
Front Immunol ; 13: 1064339, 2022.
Article in English | MEDLINE | ID: mdl-36505428

ABSTRACT

CD19 chimeric antigen receptor (CAR) T-cells have demonstrated remarkable outcomes in B-cell malignancies. Recently, the novel CD19CAR-T cells incorporated with B-cell costimulatory molecules of CD79A/CD40 demonstrated superior antitumor activity in the B-cell lymphoma model compared with CD28 or 4-1BB. Here, we investigated the intrinsic transcriptional gene underlying the functional advantage of CD19.79A.40z CAR-T cells following CD19 antigen exposure using transcriptome analysis compared to CD28 or 4-1BB. Notably, CD19.79A.40z CAR-T cells up-regulated genes involved in T-cell activation, T-cell proliferation, and NF-κB signaling, whereas down-regulated genes associated with T-cell exhaustion and apoptosis. Interestingly, CD19.79A.40z CAR- and CD19.BBz CAR-T cells were enriched in almost similar pathways. Furthermore, gene set enrichment analysis demonstrated the enrichment of genes, which were previously identified to correlate with T-cell proliferation, interferon signaling pathway, and naïve and memory T-cell signatures, and down-regulated T-cell exhaustion genes in CD79A/CD40, compared with the T-cell costimulatory domain. The CD19.79A.40z CAR-T cells also up-regulated genes related to glycolysis and fatty acid metabolism, which are necessary to drive T-cell proliferation and differentiation compared with conventional CD19CAR-T cells. Our study provides a comprehensive insight into the understanding of gene signatures that potentiates the superior antitumor functions by CD19CAR-T cells incorporated with the CD79A/CD40 costimulatory domain.


Subject(s)
CD40 Antigens , Lymphocyte Activation , Lymphocyte Activation/genetics , Cell Proliferation , CD28 Antigens/genetics , Antigens, CD19/genetics , Adaptor Proteins, Signal Transducing
13.
Front Immunol ; 13: 1028366, 2022.
Article in English | MEDLINE | ID: mdl-36466897

ABSTRACT

T cells rapidly transition from a quiescent state into active proliferation and effector function upon exposure to cognate antigen. These processes are tightly controlled by signal transduction pathways that influence changes in chromatin remodeling, gene transcription, and metabolism, all of which collectively drive specific T cell memory or effector cell development. Dysregulation of any of these events can mediate disease and the past several years has shown unprecedented novel approaches to understand these events, down to the single-cell level. The massive explosion of sequencing approaches to assess the genome and transcriptome at the single cell level has transformed our understanding of T cell activation, developmental potential, and effector function under normal and various disease states. Despite these advances, there remains a significant dearth of information regarding how these events are translated to the protein level. For example, resolution of protein isoforms and/or specific post-translational modifications mediating T cell function remains obscure. The application of proteomics can change that, enabling significant insights into molecular mechanisms that regulate T cell function. However, unlike genomic approaches that have enabled exquisite visualization of T cell dynamics at the mRNA and chromatin level, proteomic approaches, including those at the single-cell level, has significantly lagged. In this review, we describe recent studies that have enabled a better understanding of how protein synthesis and degradation change during T cell activation and acquisition of effector function. We also highlight technical advances and how these could be applied to T cell biology. Finally, we discuss future needs to expand upon our current knowledge of T cell proteomes and disease.


Subject(s)
Proteome , Proteomics , Lymphocyte Activation/genetics , Protein Processing, Post-Translational , Transcriptome
14.
Front Immunol ; 13: 1030409, 2022.
Article in English | MEDLINE | ID: mdl-36439187

ABSTRACT

There are multiple regulatory layers that control intracellular trafficking and protein secretion, ranging from transcriptional to posttranslational mechanisms. Finely regulated trafficking and secretion is especially important for lymphocytes during activation and differentiation, as the quantity of secretory cargo increases once the activated cells start to produce and secrete large amounts of cytokines, cytotoxins, or antibodies. However, how the secretory machinery dynamically adapts its efficiency and specificity in general and specifically in lymphocytes remains incompletely understood. Here we present a systematic bioinformatics analysis to address RNA-based mechanisms that control intracellular trafficking and protein secretion during B-lymphocyte activation, and differentiation, with a focus on alternative splicing. Our in silico analyses suggest that alternative splicing has a substantial impact on the dynamic adaptation of intracellular traffic and protein secretion in different B cell subtypes, pointing to another regulatory layer to the control of lymphocyte function during activation and differentiation. Furthermore, we suggest that NERF/ELF2 controls the expression of some COPII-related genes in a cell type-specific manner. In addition, T cells and B cells appear to use different adaptive strategies to adjust their secretory machineries during the generation of effector and memory cells, with antibody secreting B cell specifically increasing the expression of components of the early secretory pathway. Together, our data provide hypotheses how cell type-specific regulation of the trafficking machinery during immune cell activation and differentiation is controlled that can now be tested in wet lab experiments.


Subject(s)
Alternative Splicing , Lymphocyte Activation , Lymphocyte Activation/genetics , Protein Transport/physiology , Secretory Pathway , B-Lymphocytes
15.
PLoS One ; 17(10): e0276294, 2022.
Article in English | MEDLINE | ID: mdl-36260607

ABSTRACT

T cells are key players in our defence against infections and malignancies. When T cells differentiate or become activated, they undergo substantial alterations in gene expression. Even though RNA expression levels are now well documented throughout different stages of T cells, it is not well understood how mRNA expression translates into the protein landscape. By combining paired RNA sequencing and mass spectrometry data of primary human CD8+ T cells, we report that mRNA expression is a poor proxy for the overall protein output, irrespective of the differentiation or activation status. Yet, gene class stratification revealed a function-specific correlation of mRNA with protein expression. This gene class-specific expression pattern associated with differences in gene characteristics such as sequence conservation and untranslated region (UTR) lengths. In addition, the presence of AU-rich elements in the 3'UTR associated with alterations in mRNA and protein abundance T cell activation dependent, gene class-specific manner. In conclusion, our study highlights the role of gene characteristics as a determinant for gene expression in T cells.


Subject(s)
AU Rich Elements , Lymphocyte Activation , Humans , RNA, Messenger/metabolism , 3' Untranslated Regions/genetics , Lymphocyte Activation/genetics , CD8-Positive T-Lymphocytes/metabolism
16.
Front Immunol ; 13: 909979, 2022.
Article in English | MEDLINE | ID: mdl-35990699

ABSTRACT

CD3-engaging bispecific antibodies (BsAbs) enable the formation of an immune synapse between T cells and tumor cells, resulting in robust target cell killing not dependent on a preexisting tumor specific T cell receptor. While recent studies have shed light on tumor cell-specific factors that modulate BsAb sensitivity, the T cell-intrinsic determinants of BsAb efficacy and response durability are poorly understood. To better clarify the genes that shape BsAb-induced T cell responses, we conducted targeted analyses and a large-scale unbiased in vitro CRISPR/Cas9-based screen to identify negative regulators of BsAb-induced T cell proliferation. These analyses revealed that CD8+ T cells are dependent on CD4+ T cell-derived signaling factors in order to achieve sustained killing in vitro. Moreover, the mammalian target of rapamycin (mTOR) pathway and several other candidate genes were identified as intrinsic regulators of BsAb-induced T cell proliferation and/or activation, highlighting promising approaches to enhancing the utility of these potent therapeutics.


Subject(s)
Antibodies, Bispecific , Neoplasms , Antibodies, Bispecific/pharmacology , Antibody Formation , Humans , Lymphocyte Activation/genetics , Receptors, Antigen, T-Cell
17.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897697

ABSTRACT

Deficiencies in Mannosidase ß (MANBA) are associated with neurological abnormalities and recurrent infections. The single nucleotide polymorphism located in the 3'UTR of MANBA, rs7665090, was found to be associated with multiple sclerosis (MS) susceptibility. We aimed to study the functional impact of this polymorphism in lymphocytes isolated from MS patients and healthy controls. A total of 152 MS patients and 112 controls were genotyped for rs7665090. MANBA mRNA expression was quantified through qPCR and MANBA enzymatic activity was analyzed. Upon phytohemagglutinin stimulation, immune activation was evaluated by flow cytometry detection of CD69, endocytic function, and metabolic rates with Seahorse XFp Analyzer, and results were stratified by variation in rs7665090. A significantly reduced gene expression (p < 0.0001) and enzymatic activity (p = 0.018) of MANBA were found in lymphocytes of MS patients compared to those of controls. The rs7665090*GG genotype led to a significant ß-mannosidase enzymatic deficiency correlated with lysosomal dysfunction, as well as decreased metabolic activation in lymphocytes of MS patients compared to those of rs7665090*GG controls. In contrast, lymphocytes of MS patients and controls carrying the homozygous AA genotype behaved similarly. Our work provides new evidence highlighting the impact of the MS-risk variant, rs7665090, and the role of MANBA in the immunopathology of MS.


Subject(s)
Multiple Sclerosis , beta-Mannosidosis , Endocytosis , Genetic Predisposition to Disease , Genotype , Humans , Lymphocyte Activation/genetics , Lysosomes , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , beta-Mannosidase/genetics
18.
Front Immunol ; 13: 912826, 2022.
Article in English | MEDLINE | ID: mdl-35784324

ABSTRACT

Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes' differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.


Subject(s)
Common Variable Immunodeficiency , B-Lymphocytes , Common Variable Immunodeficiency/genetics , Humans , Lymphocyte Activation/genetics , Lymphocyte Count , T-Lymphocyte Subsets
19.
Fish Shellfish Immunol ; 127: 419-426, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779809

ABSTRACT

Interleukin-2 inducible T cell kinase (ITK) plays a predominant role in the T-cell receptor (TCR) signaling cascade to ensure valid T-cell activation and function. Nevertheless, whether it regulates T-cell response of early vertebrates remains unknown. Herein, we investigated the involvement of ITK in the lymphocyte-mediated adaptive immune response, and its regulation to T-cell activation in the Nile tilapia Oreochromis niloticus. Both sequence and structure of O. niloticus ITK (OnITK) were remarkably conserved with its homologues from other vertebrates, implying its potential conserved function. OnITK mRNA was extensively expressed in lymphoid-related tissues, and with the relative highest level in peripheral blood. Once Nile tilapia was infected by Edwardsiella piscicida, OnITK in splenic lymphocytes was significantly up-regulated on 7-day post infection at both transcription and translation levels, suggesting that OnITK might involve in the primary adaptive immune response of teleost. Furthermore, upon splenic lymphocytes were stimulated by T-cell specific mitogen PHA, OnITK mRNA and protein levels were dramatically elevated. More importantly, treatment of splenic lymphocytes with specific inhibitor significantly crippled OnITK expression, which in turn impaired the inducible expression of T-cell activation markers IFN-γ, IL-2 and CD122, indicating the critical roles of ITK in regulating T-cell activation of Nile tilapia. Taken together, our results suggest that ITK takes part in the lymphocyte-mediated adaptive immunity of tilapia, and is indispensable for T-cell activation of teleost. Our findings thus provide novel evidences for understanding the mechanism regulating T-cell immunity of early vertebrates, as well as the evolution of adaptive immune system.


Subject(s)
Cichlids , Animals , Fish Proteins/chemistry , Interleukin-2/genetics , Lymphocyte Activation/genetics , Protein-Tyrosine Kinases , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...