Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.487
Filter
1.
Immun Inflamm Dis ; 12(5): e1281, 2024 May.
Article in English | MEDLINE | ID: mdl-38780019

ABSTRACT

OBJECTIVE: To investigate the expression patterns and clinical significance of specific lymphocyte subsets in the peripheral blood of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Between December 2022 and February 2023, a cohort of 165 patients from the First Affiliated Hospital of Guangzhou University of Chinese Medicine were analyzed. The participants represented various stages of coronavirus infection severity: mild, moderate, severe, and critical. Additionally, 40 healthy individuals constituted the control group. The FC 500MPL flow cytometer and associated reagents for flow cytometry. RESULTS: Compared with the healthy control group, activated B lymphocytes witnessed a pronounced increase (p < .05). A significant decrease was observed in the levels of Breg, Cytotoxic T cells or Suppressor T-cell (Tc/s), late-activated T, late-activated Th, and late-activated Tc/s lymphocytes (p < .05). Th, initial Th, initial Tc/s, total Treg, natural Treg, induced Treg, early activated T, and early activated Th lymphocyte levels showed no significant difference (p > .05). As the disease progressed, there was an uptick in midterm activated T lymphocytes (p < .05), while Breg, T, Tc/s, senescent Tc/s, and total senescent T levels dwindled (p < .05). Noteworthy patterns emerged across different groups for B1, T-lymphocytes, Tc/s, B2, CD8+ Treg cells, and other subsets, highlighting variance in immune responses relative to disease severity. When juxtaposed, no significant difference was found in the expression levels of lymphocyte subsets between patients who died and those deemed critically ill (p > .05). CONCLUSION: Subsets of Treg and B-cells could act as yardsticks for the trajectory of SARS-CoV-2 infection and might have potential in forecasting patient trajectories. A comprehensive evaluation of lymphocyte subsets, especially in real-time, holds the key to discerning the clinical severity in those with COVID-19. This becomes instrumental in monitoring treatment outcomes, tracking disease evolution, and formulating prognostications. Moreover, the results provide a deeper understanding of the cellular immune defense mechanisms against the novel coronavirus infection.


Subject(s)
COVID-19 , Lymphocyte Subsets , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/blood , Male , Female , Middle Aged , SARS-CoV-2/immunology , Adult , Prognosis , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Aged , B-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Flow Cytometry , Lymphocyte Activation/immunology
2.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791096

ABSTRACT

UICC stage IV small-cell lung cancer (SCLC) is a highly aggressive malignancy without curative treatment options. Several randomized trials have demonstrated improved survival rates through the addition of checkpoint inhibitors to first-line platin-based chemotherapy. Consequently, a combination of chemo- and immunotherapy has become standard palliative treatment. However, no reliable predictive biomarkers for treatment response exist. Neither PD-L1 expression nor tumor mutational burden have proven to be effective predictive biomarkers. In this study, we compared the cellular immune statuses of SCLC patients to a healthy control cohort and investigated changes in peripheral blood B, T, and NK lymphocytes, as well as several of their respective subsets, during treatment with immunochemotherapy (ICT) using flow cytometry. Our findings revealed a significant decrease in B cells, while T cells showed a trend to increase throughout ICT. Notably, high levels of exhausted CD4+ and CD8+ cells, alongside NK subsets, increased significantly during treatment. Furthermore, we correlated decreases/increases in subsets after two cycles of ICT with survival. Specifically, a decrease in Th17 cells indicated a better overall survival. Based on these findings, we suggest conducting further investigation into Th17 cells as a potential early predictive biomarkers for response in patients receiving palliative ICT for stage IV SCLC.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Small Cell Lung Carcinoma , Th17 Cells , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Male , Female , Middle Aged , Aged , Th17 Cells/immunology , Th17 Cells/metabolism , Neoplasm Staging , Immunotherapy/methods , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/drug effects , Adult , Prognosis
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731992

ABSTRACT

Non-muscle-invasive papillary urothelial carcinoma (NMIPUC) of the urinary bladder is the most common type of bladder cancer. Intravesical Bacille Calmette-Guerin (BCG) immunotherapy is applied in patients with a high risk of recurrence and progression of NMIPUC to muscle-invasive disease. However, the tumor relapses in about 30% of patients despite the treatment, raising the need for better risk stratification. We explored the potential of spatial distributions of immune cell subtypes (CD20, CD11c, CD163, ICOS, and CD8) within the tumor microenvironment to predict NMIPUC recurrence following BCG immunotherapy. Based on analyses of digital whole-slide images, we assessed the densities of the immune cells in the epithelial-stromal interface zone compartments and their distribution, represented by an epithelial-stromal interface density ratio (IDR). While the densities of any cell type did not predict recurrence, a higher IDR of CD11c (HR: 0.0012, p-value = 0.0002), CD8 (HR: 0.0379, p-value = 0.005), and ICOS (HR: 0.0768, p-value = 0.0388) was associated with longer recurrence-free survival (RFS) based on the univariate Cox regression. The history of positive repeated TUR (re-TUR) (HR: 4.93, p-value = 0.0001) and T1 tumor stage (HR: 2.04, p-value = 0.0159) were associated with shorter RFS, while G3 tumor grade according to the 1973 WHO classification showed borderline significance (HR: 1.83, p-value = 0.0522). In a multivariate analysis, the two models with a concordance index exceeding 0.7 included the CD11c IDR in combination with either a history of positive re-TUR or tumor stage. We conclude that the CD11c IDR is the most informative predictor of NMIPUC recurrence after BCG immunotherapy. Our findings highlight the importance of assessment of the spatial distribution of immune cells in the tumor microenvironment.


Subject(s)
BCG Vaccine , Immunotherapy , Macrophages , Neoplasm Recurrence, Local , Tumor Microenvironment , Urinary Bladder Neoplasms , Humans , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/therapy , Male , BCG Vaccine/therapeutic use , Neoplasm Recurrence, Local/immunology , Female , Immunotherapy/methods , Aged , Middle Aged , Macrophages/immunology , Macrophages/metabolism , Carcinoma, Papillary/pathology , Carcinoma, Papillary/immunology , Carcinoma, Papillary/therapy , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Prognosis , Aged, 80 and over
4.
Oncoimmunology ; 13(1): 2349347, 2024.
Article in English | MEDLINE | ID: mdl-38746870

ABSTRACT

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Subject(s)
Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
5.
Immun Inflamm Dis ; 12(4): e1255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652012

ABSTRACT

BACKGROUND: Natural killer (NK) cells, CD3- lymphocytes, are critical players in cancer immune surveillance. This study aimed to assess two types of CD3- NK cell classifications (subsets), that is, convectional subsets (based on CD56 and CD16 expression) and new subsets (based on CD56, CD27, and CD11b expression), and their functional molecules in the peripheral blood of patients with breast cancer (BC) in comparison with healthy donors (HDs). METHODS: Thirty untreated females with BC and 20 age-matched healthy women were enrolled. Peripheral blood samples were collected and directly incubated with fluorochrome-conjugated antibodies against CD3, CD56, CD16, CD27, CD11b, CD96, NKG2C, NKG2D, NKp44, CXCR3, perforin, and granzyme B. Red blood cells were then lysed using lysing solution, and the stained cells were acquired on four-color flow cytometer. RESULT: Our results indicated 15% of lymphocytes in peripheral blood of patients with BC and HDs had NK cells phenotype. However, the frequency of total NK cells (CD3-CD56+), and NK subsets (based on conventional and new classifications) was not significantly different between patients and HDs. We observed mean fluorescent intensity (MFI) of CXCR3 in total NK cells (p = .02) and the conventional cytotoxic (CD3-CD56dim CD16+) NK cells (p = .03) were significantly elevated in the patients with BC compared to HDs. Despite this, the MFI of granzyme B expression in conventional regulatory (CD3-CD56brightCD16- /+) NK cells and CD3-CD56-CD16+ NK cells (p = .03 and p = .004, respectively) in the patients was lower than healthy subjects. CONCLUSION: The higher expression of chemokine receptor CXCR3 on total NK cells in patients with BC may be associated with increased chemotaxis-related NK cell infiltration. However, lower expression of granzyme B in conventional regulatory NK cells and CD3-CD56-CD16+ NK cells in the patients compared to HDs suggests reduced cytotoxic activity of the NK cells in BC. These results might demonstrate accumulating NK subsets with a dysfunctional phenotype in the peripheral blood of patients with BC.


Subject(s)
Breast Neoplasms , Killer Cells, Natural , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Middle Aged , Adult , Aged , Flow Cytometry , Immunophenotyping , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Granzymes/blood , Antigens, CD/blood , Antigens, CD/immunology
6.
Immunol Rev ; 323(1): 107-117, 2024 May.
Article in English | MEDLINE | ID: mdl-38563448

ABSTRACT

Group 1 innate lymphoid cells (ILCs), comprising ILC1s and natural killer cells (NK cells), belong to a large family of developmentally related innate lymphoid cells that lack rearranged antigen-specific receptors. NK cells and ILC1s both require the transcription factor T-bet for lineage commitment but additionally rely on Eomes and Hobit, respectively, for their development and effector maturation programs. Both ILC1s and NK cells are essential for rapid responses against infections and mediate cancer immunity through production of effector cytokines and cytotoxicity mediators. ILC1s are enriched in tissues and hence generally considered tissue resident cells whereas NK cells are often considered circulatory. Despite being deemed different cell types, ILC1s and NK cells share many common features both phenotypically and functionally. Recent studies employing single cell RNA sequencing (scRNA-seq) technology have exposed previously unappreciated heterogeneity in group 1 ILCs and further broaden our understanding of these cells. Findings from these studies imply that ILC1s in different tissues and organs share a common signature but exhibit some unique characteristics, possibly stemming from tissue imprinting. Also, data from recent fate mapping studies employing Hobit, RORγt, and polychromic reporter mice have greatly advanced our understanding of the developmental and effector maturation programs of these cells. In this review, we aim to outline the fundamental traits of mouse group 1 ILCs and explore recent discoveries related to their developmental programs, phenotypic heterogeneity, plasticity, and transcriptional regulation.


Subject(s)
Cell Plasticity , Gene Expression Regulation , Immunity, Innate , Killer Cells, Natural , Animals , Humans , Cell Plasticity/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Differentiation , Cell Lineage/genetics , Transcription, Genetic , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism
7.
J Immunol ; 212(12): 1904-1912, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38668728

ABSTRACT

NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-ß1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-ß1 could also induce immunosuppressive NK-like cells. First, we found that TGF-ß1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-ß-dependent manner. Interestingly, TGF-ß1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-ß1-rich environments.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Transforming Growth Factor beta1 , Humans , Killer Cells, Natural/immunology , Interleukin-15/immunology , Interleukin-15/metabolism , Transforming Growth Factor beta1/metabolism , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , CD56 Antigen/metabolism , Cells, Cultured , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocyte Activation/immunology
8.
Front Endocrinol (Lausanne) ; 15: 1323647, 2024.
Article in English | MEDLINE | ID: mdl-38481438

ABSTRACT

Purpose: Metabolic and immune changes in the early stages of osteoporosis are not well understood. This study aimed to explore the changes in bone metabolites and bone marrow lymphocyte subsets and their relationship during the osteoporosis onset. Methods: We established OVX and Sham mouse models. After 5, 15, and 40 days, five mice in each group were sacrificed. Humeri were analyzed by microCT. The bone marrow cells of the left femur and tibia were collected for flow cytometry analysis. The right femur and tibia were analyzed by LC-MS/MS for metabolomics analysis. Results: Bone microarchitecture was significantly deteriorated 15 days after OVX surgery. Analysis of bone metabolomics showed that obvious metabolite changes had happened since 5 days after surgery. Lipid metabolism was significant at the early stage of the osteoporosis. The proportion of immature B cells was increased, whereas the proportion of mature B cells was decreased in the OVX group. Metabolites were significantly correlated with the proportion of lymphocyte subsets at the early stage of the osteoporosis. Conclusion: Lipid metabolism was significant at the early stage of the osteoporosis. Bone metabolites may influence bone formation by interfering with bone marrow lymphocyte subsets.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Mice , Animals , Osteoporosis, Postmenopausal/etiology , Osteoporosis, Postmenopausal/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Osteoporosis/etiology , Osteoporosis/metabolism , Disease Models, Animal , Lymphocyte Subsets/metabolism
9.
Semin Immunopathol ; 45(4-6): 509-519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305897

ABSTRACT

The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Animals , Lymphocytes/immunology , Lymphocytes/metabolism , Disease Susceptibility , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Immunity, Mucosal
10.
Genes (Basel) ; 13(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36360222

ABSTRACT

As an antimicrobial peptide, NK-lysin (NKL) plays an important role in the innate immune system of organisms. In this study, 300 piglets (68 Landrace pigs, 158 Large White pigs and 74 Songliao Black pigs) were used to further explore the function of NLK gene in porcine immune system. The quantitative real-time PCR analysis detected the NKL gene's expression, and the result demonstrated that NKL mRNA was expressed in lung, spleen, stomach, kidney, liver and heart, and the expression level decreased sequentially. A single-nucleotide polymorphism (SNP, g.59070355 G > A) in intron 3 of the NKL gene was detected by PCR amplification and sequencing. The results of the Chi-square (χ2) test showed that the genotype of the SNP was consistent with the Hardy-Weinberg equilibrium. What's more, association analysis results showed the SNP in NKL gene was significantly associated with T lymphocyte subpopulations. Different genotypes had significant effects on the proportion of CD4-CD8-, CD4-CD8+, CD4+CD8+, CD8+, CD4+/CD8+ in peripheral blood (p < 0.05). These results further suggested that NKL could be recognized as a promising immune gene for swine disease resistance breeding.


Subject(s)
Lymphocyte Subsets , Proteolipids , Swine/genetics , Animals , Proteolipids/genetics , Proteolipids/chemistry , Proteolipids/metabolism , Lymphocyte Subsets/metabolism , Genomics
11.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36161486

ABSTRACT

Long-read sequencing technologies such as isoform sequencing can generate highly accurate sequences of full-length mRNA transcript isoforms. Such long-read transcriptomics may be especially useful in investigations of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes are readily available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified 4 lymphocyte populations (CD4+ T, CD8+ T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN > 8) for isoform sequencing and parallel RNA-Seq analyses. Many novel polyadenylated transcript isoforms, supported by both isoform sequencing and RNA-Seq data, were identified within each sample. The datasets met several metrics of high quality and have been deposited to the Gene Expression Omnibus database (GSE202327, GSE202328, GSE202329) as both raw and processed files to serve as long-read reference transcriptomes for future studies of human circulating lymphocytes.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Male , High-Throughput Nucleotide Sequencing , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Analysis, RNA , Lymphocyte Subsets/metabolism
12.
Immunity ; 55(2): 254-271.e7, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35139352

ABSTRACT

Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.


Subject(s)
Inflammation/immunology , Interferon-gamma/immunology , Lymphocyte Subsets/immunology , Th2 Cells/immunology , Animals , Cell Death/immunology , Cell Movement/immunology , Hypersensitivity/immunology , Immunity, Innate , Interleukin-33/immunology , Interleukin-5/metabolism , Listeria monocytogenes , Listeriosis/immunology , Listeriosis/mortality , Liver/immunology , Lung/immunology , Lymphocyte Subsets/metabolism , Lysophospholipids/immunology , Mice , Parenchymal Tissue/immunology , Sphingosine/analogs & derivatives , Sphingosine/immunology , Th1 Cells/immunology , Th2 Cells/metabolism
13.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35044462

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) have emerged as critical mediators in driving allergic airway inflammation. Here, we identified angiotensin (Ang) II as a positive regulator of ILC2s. ILC2s expressed higher levels of the Ang II receptor AT1a, and colocalized with lung epithelial cells expressing angiotensinogen. Administration of Ang II significantly enhanced ILC2 responses both in vivo and in vitro, which were almost completely abrogated in AT1a-deficient mice. Deletion of AT1a or pharmacological inhibition of the Ang II-AT1 axis resulted in a remarkable remission of airway inflammation. The regulation of ILC2s by Ang II was cell intrinsic and dependent on interleukin (IL)-33, and was associated with marked changes in transcriptional profiling and up-regulation of ERK1/2 phosphorylation. Furthermore, higher levels of plasma Ang II correlated positively with the abundance of circulating ILC2s as well as disease severity in asthmatic patients. These observations reveal a critical role for Ang II in regulating ILC2 responses and airway inflammation.


Subject(s)
Angiotensin II/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Receptor, Angiotensin, Type 1/metabolism , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/metabolism , Animals , Biomarkers , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Disease Models, Animal , Disease Susceptibility , Inflammation , Interleukin-33/metabolism , Mice , Mice, Knockout , Receptor, Angiotensin, Type 1/genetics , Respiratory Tract Diseases/pathology
14.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090581

ABSTRACT

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Subject(s)
B-Lymphocytes/immunology , CD11 Antigens/metabolism , Lymphocyte Subsets/immunology , T Follicular Helper Cells/immunology , T-Box Domain Proteins/metabolism , Virus Diseases/immunology , Animals , Antibodies, Viral/metabolism , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Germinal Center/immunology , Alphainfluenzavirus/immunology , Integrins/metabolism , Lymphocyte Subsets/metabolism , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Spleen/immunology
15.
Toxicology ; 465: 153047, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34838595

ABSTRACT

Recent evidences suggest the role of chronic lead (Pb) exposure in altering immunological parameters. Present study aimed to systematically review existing literature and synthesize quantitative evidence on the association between chronic Pb exposure and changes in immunological markers. Observational studies reporting immunological markers such as leukocyte derivative counts (CD3+, CD4+, CD8+, CD45+, CD56+, lymphocyte, and total leukocyte), cytokine, Immunoglobulin (Igs), C-reactive protein (CRP) among Pb-exposed and unexposed controls were systematically searched from PubMed, Scopus and Embase digital databases from inception to January 2021. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adhered during systematic review. Mean differences in the immunological markers between Pb-exposed and control groups were pooled using random-effects model. The heterogeneity was assessed using Cochran-Q test and I2 statistic. The review included forty studies reporting immunological markers in Pb-exposed and unexposed control groups. The occupational Pb-exposed group exhibited significantly higher BLL, impaired immunological markers, characterized by a marginal lowering in lymphocyte count, lymphocyte subsets (CD3+, CD4+, CD4+/CD8+ ratio), IFN-γ and IgG levels, while CD8+, IgM, IgA, IgE, and cytokines (IL-4, IL-6, IL-10, and TNF-α) exhibited a trend of higher values in comparison to the control group. Further, inflammatory marker viz., total leukocyte count was significantly higher among Pb-exposed. The included studies exhibited high levels of heterogeneity. In conclusion, Occupational Pb exposure alters the immunological markers such as the circulating cytokines and leukocyte counts. However, high-quality, multicentered studies are required to strengthen present observations and further understand the Pb's role on the immune system. Prospero Registration ID: CRD42021228252.


Subject(s)
Environmental Pollutants/adverse effects , Immune System/drug effects , Lead/adverse effects , Lymphocyte Subsets/drug effects , Occupational Exposure/adverse effects , Occupational Health , Antigens, CD/blood , Biomarkers/blood , Cytokines/blood , Humans , Immune System/immunology , Immune System/metabolism , Immunoglobulins/blood , Inflammation Mediators/blood , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Risk Assessment
16.
Immunology ; 165(1): 122-140, 2022 01.
Article in English | MEDLINE | ID: mdl-34549818

ABSTRACT

Haemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during erythrocyte lysis. Whether Hb is preferentially inflammatory in lupus and triggers broad anti-self responses was assessed. Peripheral blood mononuclear cells (PBMCs) derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with human Hb than did PBMCs derived from healthy donors, an effect negated by haptoglobin. Ferric murine Hb triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from ageing, lupus-prone NZM2410 mice, and also had mitogenic effects on B cells. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures that contain packaged autoantigens) revealed synergies-in terms of cytokine release and autoantibody production in vitro-that were also restricted to the lupus genotype. Murine ferric Hb activated multiple signalling pathways and, in combination with apoptotic blebs, preferentially triggered MAP kinase signalling specifically in splenocytes isolated from lupus-prone mice. Infusion of murine ferric Hb into lupus-prone mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, possibly in concert with lupus-associated autoantigens, triggers inflammatory responses and the generation of lupus-associated cytokines, and also stimulates the generation of potentially pathogenic lupus-associated autoantibodies, neutralization of Hb could have beneficial effects.


Subject(s)
Autoantigens/immunology , Hemoglobins/metabolism , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/etiology , Lupus Nephritis/metabolism , Animals , Apoptosis/genetics , Apoptosis/immunology , Autoantibodies/immunology , Biomarkers , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Humans , Imidazoles/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/immunology , Lupus Nephritis/pathology , Lymphocyte Activation/immunology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mice , Protein Binding , Signal Transduction , Spleen/immunology , Spleen/metabolism
17.
Blood ; 139(4): 608-623, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34657151

ABSTRACT

The key immunologic signatures associated with clinical outcomes after posttransplant cyclophosphamide (PTCy)-based HLA-haploidentical (haplo) and HLA-matched bone marrow transplantation (BMT) are largely unknown. To address this gap in knowledge, we used machine learning to decipher clinically relevant signatures from immunophenotypic, proteomic, and clinical data and then examined transcriptome changes in the lymphocyte subsets that predicted major posttransplant outcomes. Kinetics of immune subset reconstitution after day 28 were similar for 70 patients undergoing haplo and 75 patients undergoing HLA-matched BMT. Machine learning based on 35 candidate factors (10 clinical, 18 cellular, and 7 proteomic) revealed that combined elevations in effector CD4+ conventional T cells (Tconv) and CXCL9 at day 28 predicted acute graft-versus-host disease (aGVHD). Furthermore, higher NK cell counts predicted improved overall survival (OS) due to a reduction in both nonrelapse mortality and relapse. Transcriptional and flow-cytometric analyses of recovering lymphocytes in patients with aGVHD identified preserved hallmarks of functional CD4+ regulatory T cells (Tregs) while highlighting a Tconv-driven inflammatory and metabolic axis distinct from that seen with conventional GVHD prophylaxis. Patients developing early relapse displayed a loss of inflammatory gene signatures in NK cells and a transcriptional exhaustion phenotype in CD8+ T cells. Using a multimodality approach, we highlight the utility of systems biology in BMT biomarker discovery and offer a novel understanding of how PTCy influences alloimmune responses. Our work charts future directions for novel therapeutic interventions after these increasingly used GVHD prophylaxis platforms. Specimens collected on NCT0079656226 and NCT0080927627 https://clinicaltrials.gov/.


Subject(s)
Bone Marrow Transplantation , Cyclophosphamide/therapeutic use , Graft vs Host Disease/diagnosis , Immunosuppressive Agents/therapeutic use , Adult , Bone Marrow Transplantation/adverse effects , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Immune Reconstitution , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Machine Learning , Male , Middle Aged , Proteomics , Transcriptome , Young Adult
18.
Cancer Immunol Immunother ; 71(3): 541-552, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34269847

ABSTRACT

PURPOSE: The influence of radiotherapy on patient immune cell subsets has been established by several groups. Following a previously published analysis of immune changes during and after curative radiotherapy for prostate cancer, this analysis focused on describing correlations of changes of immune cell subsets with radiation treatment parameters. PATIENTS AND METHODS: For 13 patients treated in a prospective trial with radiotherapy to the prostate region (primary analysis) and five patients treated with radiotherapy to prostate and pelvic nodal regions (exploratory analysis), already published immune monitoring data were correlated with clinical data as well as radiation planning parameters such as clinical target volume (CTV) and volumes receiving 20 Gy (V20) for newly contoured volumes of pelvic blood vessels and bone marrow. RESULTS: Most significant changes among immune cell subsets were observed at the end of radiotherapy. In contrast, correlations of age and CD8+ subsets (effector and memory cells) were observed early during and 3 months after radiotherapy. Ratios of T cells and T cell proliferation compared to baseline correlated with CTV. Early changes in regulatory T cells (Treg cells) and CD8+ effector T cells correlated with V20 of blood vessels and bone volumes. CONCLUSIONS: Patient age as well as radiotherapy planning parameters correlated with immune changes during radiotherapy. Larger irradiated volumes seem to correlate with early suppression of anti-cancer immunity. For immune cell analysis during normofractionated radiotherapy and correlations with treatment planning parameters, different time points should be looked at in future projects. TRIAL REGISTRATION NUMBER: NCT01376674, 20.06.2011.


Subject(s)
Biomarkers , Immune System/radiation effects , Prostatic Neoplasms/immunology , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Adult , Age Factors , Humans , Immunophenotyping , Leukocyte Count , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/radiation effects , Male , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/pathology , Radiotherapy, Image-Guided , Young Adult
19.
J Infect Dis ; 225(1): 84-93, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34125227

ABSTRACT

BACKGROUND: Increased levels of inflammatory cytokines are associated with severe dengue evolution, but the source of such hypercytokinemia is elusive. We investigated the contribution of innate lymphocytes, innate lymphoid cells (ILCs), and natural killer (NK) cells in cytokine production in early dengue infection. METHODS: Peripheral blood mononuclear cells of individuals with dengue without warning signs (DWS-) and dengue with warning signs and severe dengue (SD) presentation combined (DWS+) were obtained between 2 and 7 days since fever onset and submitted to flow cytometry without specific antigen stimulation to evaluate cytokines in ILC and NK cell subpopulations. RESULTS: ILCs and NK cells were found to be important sources of cytokines during dengue. ILCs of the DWS+/SD group displayed higher production of interferon gamma (IFN-γ) and interleukin (IL) 4/IL-13 when compared to DWS- individuals. On the other hand, NK Eomes+ cells of DWS- patients displayed higher IFN-γ production levels compared with the DWS+/SD group. Interestingly, when NK cells were identified by CD56 expression, DWS+/SD displayed higher frequency of IL-17 production compared with the DWS- group. CONCLUSIONS: These results indicate that ILCs and NK cells are important sources of inflammatory cytokines during acute dengue infection and display distinct profiles associated with different clinical forms.


Subject(s)
Cytokines/metabolism , Interferon-gamma , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Severe Dengue , Cytokines/immunology , Humans , Immunity, Innate , Leukocytes, Mononuclear , Lymphocyte Subsets/metabolism , Lymphocytes , Severe Dengue/blood , Severe Dengue/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...