Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.872
Filter
1.
Nat Commun ; 15(1): 4701, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830882

ABSTRACT

Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-12 , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Interleukin-12/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Female , Immune Checkpoint Inhibitors/pharmacology , Humans , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics
2.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832955

ABSTRACT

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Mice, Knockout , Prostatic Neoplasms , Tumor Microenvironment , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mice , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Humans , Mice, Inbred C57BL , Cell Line, Tumor
3.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833034

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Subject(s)
Benzofurans , Cell Differentiation , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Mice, Inbred C57BL , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
4.
Cancer Immunol Immunother ; 73(8): 138, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833177

ABSTRACT

Despite the success of immune checkpoint inhibitors (ICIs) in treating solid tumors, lots of patients remain unresponsive to this therapy. Microwave ablation (MWA) stimulates systemic adaptive immunity against tumor cells by releasing tumor antigens. Additionally, IL-21 has demonstrated importance in stimulating T-cell effector function. The combination of these three therapies-MWA, IL-21, and anti-PD-1 monoclonal antibodies (mAbs)-has yet to be explored in the context of cancer treatment.In this study, we explored the impact of thermal ablation on IL-21R expression in tumor-infiltrating lymphocytes (TILs). Subsequently, we assessed alterations in the tumor microenvironment (TME) and peripheral lymphoid organs. Additionally, we conducted a thorough examination of tumor-infiltrating CD45+ immune cells across various treatment groups using single-cell RNA sequencing (scRNA-seq). Moreover, we determined the potential anti-tumor effects of the triple combination involving MWA, IL-21, and anti-PD-1 mAbs.Our findings revealed that MWA upregulated the expression of IL-21R on various immune cells in the untreated tumors. The combination of MWA with IL-21 exhibited a robust abscopal anti-tumor effect, enhancing the effector function of CD8+ T cells and facilitating dendritic cells' maturation and antigen presentation in the untreated tumor. Notably, the observed abscopal anti-tumor effect resulting from the combination is contingent upon T-cell recirculation, indicating the reliance of systemic adaptive immunity for this treatment regimen. Additionally, the combination of MWA, IL-21, and PD-1 mAbs demonstrated profound abscopal anti-tumor efficacy. Our findings provide support for further clinical investigation into a triple combination therapy involving MWA, IL-21, and ICIs for the treatment of metastatic cancer.


Subject(s)
Immune Checkpoint Inhibitors , Interleukins , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Interleukins/metabolism , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Humans , Tumor Microenvironment/immunology , Combined Modality Therapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Neoplasms/immunology , Neoplasms/therapy , Mice, Inbred C57BL , Cell Line, Tumor
5.
PLoS One ; 19(5): e0300729, 2024.
Article in English | MEDLINE | ID: mdl-38691575

ABSTRACT

Penile squamous cell carcinoma (PSCC) occurs more frequently in some developing countries compared to developed countries. Infection with HIV and/or high-risk human papillomavirus (hrHPV) are risk factors for penile cancer development. The tumor microenvironment of PSCC may predict prognosis and may inform on the best targets for immunotherapy. We evaluated the immune microenvironment of penile tumors histologically, and determined whether and/or how HIV and/or hrHPV infections affect this tumor microenvironment. We conducted a prospective analytical cross-sectional study in which penile cancer tumors from 35 patients presenting at the University Teaching Hospital in Lusaka, Zambia were histologically staged and assessed for presence of tumor infiltrating immune cells and expression of immune checkpoints. Immunohistochemistry was used to evaluate immune checkpoints and infiltrating immune cells, while multiplex real-time polymerase chain reaction was used for hrHPV genotyping. The median age of all participants was 55 years. About 24% had advanced histological stage, 83% were HIV+, and 63% had hrHPV detected in their tumors using multiplex real-time polymerase chain reaction. PDL1 expression was significantly higher in HIV- participants than HIV+ participants (p = 0.02). Tumors with multiple hrHPV infections had a significantly higher number of cells expressing TIM3 than those with one hrHPV (p = 0.04). High grade tumors had a significantly higher infiltrate of FoxP3+ cells (p = 0.02), CD68+ cells (p = 0.01), CD163+ cells (p = 0.01), LAG3+ cells (p = 0.01), PD1+ cells (p = 0.01) and TIM3+ cells (p = 0.03) when compared with low grade tumours. There was significant moderate to strong positive correlation of cells expressing PD1 and LAG3 (⍴ = 0.69; p = 0.0001), PD1 and TIM3 (⍴ = 0.49; p = 0.017) and TIM3 and LAG3 PDL1 (⍴ = 0.61; p = 0.001). In conclusion, the tumor microenvironment of penile squamous cell carcinoma seems to be affected by both HIV and HPV infections. TIM3 appears to be a potential therapeutic target in PSCC patients with hrHPV infections.


Subject(s)
Carcinoma, Squamous Cell , HIV Infections , Papillomavirus Infections , Penile Neoplasms , Tumor Microenvironment , Humans , Male , Tumor Microenvironment/immunology , Penile Neoplasms/virology , Penile Neoplasms/pathology , Penile Neoplasms/immunology , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Middle Aged , HIV Infections/immunology , HIV Infections/complications , HIV Infections/virology , HIV Infections/pathology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomavirus Infections/pathology , Cross-Sectional Studies , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Aged , Papillomaviridae , Adult , Prospective Studies , Lymphocytes, Tumor-Infiltrating/immunology , Human Papillomavirus Viruses
7.
Sci Rep ; 14(1): 10315, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705879

ABSTRACT

Several studies have shown an association between prostate carcinoma (PCa) and Epstein-Barr virus (EBV); however, none of the studies so far have identified the histopathological and genetic markers of cancer aggressiveness associated with EBV in PCa tissues. In this study, we used previously characterized EBV-PCR-positive (n = 39) and EBV-negative (n = 60) PCa tissues to perform an IHC-based assessment of key histopathological and molecular markers of PCa aggressiveness (EMT markers, AR expression, perineural invasion, and lymphocytic infiltration characterization). Additionally, we investigated the differential expression of key oncogenes, EMT-associated genes, and PCa-specific oncomiRs, in EBV-positive and -negative tissues, using the qPCR array. Finally, survival benefit analysis was also performed in EBV-positive and EBV-negative PCa patients. The EBV-positive PCa exhibited a higher percentage (80%) of perineural invasion (PNI) compared to EBV-negative PCa (67.3%) samples. Similarly, a higher lymphocytic infiltration was observed in EBV-LMP1-positive PCa samples. The subset characterization of T and B cell lymphocytic infiltration showed a trend of higher intratumoral and tumor stromal lymphocytic infiltration in EBV-negative tissues compared with EBV-positive tissues. The logistic regression analysis showed that EBV-positive status was associated with decreased odds (OR = 0.07; p-value < 0.019) of CD3 intratumoral lymphocytic infiltration in PCa tissues. The analysis of IHC-based expression patterns of EMT markers showed comparable expression of all EMT markers, except vimentin, which showed higher expression in EBV-positive PCa tissues compared to EBV-negative PCa tissues. Furthermore, gene expression analysis showed a statistically significant difference (p < 0.05) in the expression of CDH1, AR, CHEK-2, CDKN-1B, and CDC-20 and oncomiRs miR-126, miR-152-3p, miR-452, miR-145-3p, miR-196a, miR-183-3p, and miR-146b in EBV-positive PCa tissues compared to EBV-negative PCa tissues. Overall, the survival proportion was comparable in both groups. The presence of EBV in the PCa tissues results in an increased expression of certain oncogenes, oncomiRs, and EMT marker (vimentin) and a decrease in CD3 ITL, which may be associated with the aggressive forms of PCa.


Subject(s)
Biomarkers, Tumor , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/virology , Prostatic Neoplasms/mortality , Prostatic Neoplasms/metabolism , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/complications , Biomarkers, Tumor/genetics , Aged , Gene Expression Regulation, Neoplastic , Genetic Markers , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Epithelial-Mesenchymal Transition/genetics , Neoplasm Invasiveness
8.
Med Sci Monit ; 30: e944927, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689550

ABSTRACT

On February 16, 2024, the US Food and Drug Agency (FDA) granted accelerated approval to lifileucel (Amtagvi), an adoptive immune cell therapy with autologous ex vivo-expanded tumor-infiltrating lymphocytes (TILs) for adult patients with advanced or unresectable melanoma progressing after treatment with immune checkpoint inhibitors and, if BRAF V600 mutation-positive, BRAF/MEK inhibitors. The clinical studies supporting this regulatory approval have highlighted the complexity of the treatment manufacturing process and the requirements for patient selection, a pretreatment lymphodepletion regimen, followed by a single infusion of lifileucel (Amtagvi), and up to six treatments with high-dose IL-2, with the potential for adverse events at each stage of treatment. In early 2024, expert consensus guidelines were published on best practices and patient management for adoptive cell therapy with autologous, ex vivo-expanded TILs, and an international TIL Working Group was formed in anticipation of further regulatory approvals bringing these treatments to the clinic. This editorial aims to provide an update on the importance of a first approval for adoptive cell therapy with autologous, ex vivo-expanded TILs and the challenges of implementing a complex, time-consuming, and potentially costly immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating , Melanoma , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Melanoma/immunology , United States , United States Food and Drug Administration , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Transplantation, Autologous/methods
9.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Article in English | MEDLINE | ID: mdl-38703051

ABSTRACT

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid-Derived Suppressor Cells/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Immune Tolerance , Animals , Tumor-Associated Macrophages/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Myeloid Cells/immunology
10.
Cytokine ; 179: 156628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704962

ABSTRACT

BACKGROUND: The expression level of apolipoprotein E (APOE) in pancreatic ductal adenocarcinoma (PDAC) and its effect on the prognosis of PDAC patients are not clear. The effect of APOE on the immune status of patients with PDAC has not been elucidated. METHODS: We obtained pancreatic cancer data from the TCGA and GETx databases. Patients with PDAC who underwent pancreatic surgery at the Second Affiliated Hospital of Jiaxing University between 2012 and 2021 were included. Clinical pathological data were recorded, plasma APOE levels were measured, and tissue samples were collected. A tissue microarray was generated using the collected tissue samples. APOE and CD4 staining was performed to determine immunoreactive scores (IRSs). The expression of APOE in the plasma and tumour tissues of pancreatic cancer patients was analysed and compared. The correlations between plasma APOE levels, tissue APOE levels and clinicopathological characteristics were analysed. Survival prognosis was analysed using Kaplan-Meier survival analysis and Cox multivariate regression analysis. The correlations between APOE expression levels and immune biomarkers and immune cells were further analysed. Single-cell analysis of APOE distribution in various cells was performed on the TISCH website. RESULTS: APOE was highly expressed in the tumour tissue of pancreatic cancer patients, and high plasma APOE levels were associated with poor prognosis. Females, patients with high-grade disease and patients with pancreatic head carcinoma had high plasma APOE levels. High APOE expression in tumour tissues was associated with good prognosis. Mononuclear macrophages in the pancreatic cancer microenvironment primarily expressed APOE. APOE levels positively correlated with immune biomarkers, such as CD8A, PDCD1, GZMA, CXCL10, and CXCL9, in the tumour microenvironment. APOE promoted CD4 + T cell or dendritic cell infiltration in the tumour microenvironment. CONCLUSIONS: APOE may affect the occurrence and development of pancreatic cancer by regulating the infiltration of immune cells in the tumour microenvironment.


Subject(s)
Apolipoproteins E , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Aged , Female , Humans , Male , Middle Aged , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/blood , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/blood , Prognosis , Tumor Microenvironment/immunology
11.
J Cancer Res Clin Oncol ; 150(5): 262, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762825

ABSTRACT

PURPOSE: Immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) has become first-line therapy for metastatic renal cell carcinoma patients. This study aims to investigate the effect of tumor infiltrating B lymphocytes (TIBs) on the combination therapy. METHODS: The retrospective analysis was conducted on the clinical records of 115 metastatic clear cell renal cell carcinoma (mccRCC) patients treated with anti-PD-1 antibody plus Axitinib between March 2020 and June 2023. Observation target: objective response rate (ORR), and overall survival (OS), progression-free survival (PFS) and immune profile. RESULTS: Patients with high TIBs portended lower ORR of the combination therapy (p = 0.033). TIBs was an independent predictor for poorer OS (p = 0.013) and PFS (p = 0.021) in mccRCC patients with combination treatment. TIBs infiltration was associated with more CD4+T (p < 0.001), CD8+T (p < 0.001), M2 macrophages (p = 0.020) and regulatory T cells (Tregs) (p = 0.004). In TIBs high patients, the percentages of PD-1, CTLA-4 and TIM-3 positive rate were significantly increased in CD4+T (p = 0.038, 0.029 and 0.002 respectively) and CD8+T cells (p = 0.006, 0.026 and < 0.001 respectively). CONCLUSIONS: Our study revealed TIBs infiltration predicted adverse outcomes in mccRCC patients treated with anti-PD-1 antibody plus Axitinib. As a corollary, TIBs positively associated with M2 macrophages and Tregs, leading to subsequent multiple immune checkpoints related exhaustion of T cells. Thus, only PD-1 blockade are inadequate to reverse T cells exhaustion effectively in high TIBs mccRCC patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Axitinib , B-Lymphocytes , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Axitinib/therapeutic use , Axitinib/administration & dosage , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Male , Female , Middle Aged , Retrospective Studies , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Aged , Lymphocytes, Tumor-Infiltrating/immunology , B-Lymphocytes/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Aged, 80 and over
12.
Front Immunol ; 15: 1387896, 2024.
Article in English | MEDLINE | ID: mdl-38736875

ABSTRACT

Background: Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods: 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results: The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions: Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.


Subject(s)
AMP-Activated Protein Kinase Kinases , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Protein Serine-Threonine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Female , Male , Protein Serine-Threonine Kinases/genetics , Prognosis , Middle Aged , Aged , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Adult , Kaplan-Meier Estimate
13.
Medicine (Baltimore) ; 103(19): e38129, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728458

ABSTRACT

BACKGROUND: The prognostic significance of tumor-infiltrating immune cells in endometrial cancer is a subject of ongoing debate. Recent evidence increasingly suggests that these immune cells and cytokines, abundant in endometrial cancer tissues, play a pivotal role in stimulating the body inherent anti-tumor immune responses. METHODS: Leveraging publicly accessible genetic data, we conducted an exhaustive 2-sample Mendelian randomization (MR) study. This study aimed to explore the causal links between 731 immunophenotypes and the risk of endometrial cancer. We thoroughly assessed the robustness, heterogeneity, and potential horizontal pleiotropy of our findings through extensive sensitivity analyses. RESULTS: Our study identified 36 immunophenotypes associated with endometrial cancer risk. Specific immunophenotypes, such as the percentage of Naive-mature B-cells in lymphocytes (OR = 0.917, 95% CI = 0.863-0.974, P = .005), and HLA DR expression on CD14-CD16 + monocytes (OR = 0.952, 95% CI = 0.911-0.996, P = .032), exhibited a negative correlation with endometrial cancer. Conversely, CD127 expression on CD45RA + CD4 + in Treg cells (OR = 1.042, 95% CI = 1.000-1.085, P = .049), and CM CD4+%T in T cell maturation stages (OR = 1.074, 95% CI = 1.012-1.140, P = .018) showed a positive correlation. Reverse MR analysis linked endometrial cancer to 4 immunophenotypes, including a positive correlation with CD127-CD8br %T cell of Treg (OR = 1.172, 95% CI = 1.080-1.270, P = .0001), and negative correlations with 3 others, including CM CD4+%T cell (OR = 0.905, 95% CI = 0.832-0.984, P = .019). CONCLUSION SUBSECTIONS: Our findings underscore a significant causal relationship between immunophenotypes and endometrial cancer in bidirectional MR analyses. Notably, the CM CD4+%T immunophenotype emerged as potentially crucial in endometrial cancer development.


Subject(s)
Endometrial Neoplasms , Mendelian Randomization Analysis , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/immunology , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/immunology
14.
Cancer Immunol Immunother ; 73(7): 131, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748299

ABSTRACT

PURPOSE: The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS: We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohistochemistry (mIHC). RESULTS: Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS: Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.


Subject(s)
CD8-Positive T-Lymphocytes , Glutathione , Immunotherapy , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glutathione/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Biomarkers, Tumor/metabolism , Male , gamma-Glutamyltransferase/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
15.
Cell Death Dis ; 15(5): 339, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750022

ABSTRACT

The therapeutic efficacy of adoptive T cell therapy is largely restricted by reduced viability and dysfunction of CD8+ T cells. Continuous antigen stimulation disrupts the expansion, effector function, and metabolic fitness of CD8+ T cells, leading to their differentiation into an exhausted state within the tumor microenvironment (TME). While the function of the cell cycle negative regulator p16 in senescent cells is well understood, its role in T cell exhaustion remains unclear. In this study, we demonstrated that TCR stimulation of CD8+ T cells rapidly upregulates p16 expression, with its levels positively correlating with TCR affinity. Chronic TCR stimulation further increased p16 expression, leading to CD8+ T cell apoptosis and exhaustion differentiation, without inducing DNA damage or cell senescence. Mechanistic investigations revealed that p16 downregulates mTOR, glycolysis, and oxidative phosphorylation (OXPHOS) associated gene expression, resulting in impaired mitochondrial fitness, reduced T cell viability, and diminished effector function. Furthermore, the deletion of p16 significantly enhances the persistence of CD8+ T cells within tumors and suppresses the terminal exhaustion of tumor-infiltrating T cells. Overall, our findings elucidate how increased p16 expression reshapes T cell intracellular metabolism, drives T cell apoptosis and exhaustion differentiation, and ultimately impairs T cell anti-tumor function.


Subject(s)
Apoptosis , CD8-Positive T-Lymphocytes , Cyclin-Dependent Kinase Inhibitor p16 , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Animals , Mice , Humans , Mice, Inbred C57BL , Tumor Microenvironment/immunology , Cell Differentiation , Receptors, Antigen, T-Cell/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Glycolysis , T-Cell Exhaustion
16.
PLoS One ; 19(5): e0303171, 2024.
Article in English | MEDLINE | ID: mdl-38768113

ABSTRACT

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Subject(s)
High-Throughput Nucleotide Sequencing , Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/immunology , High-Throughput Nucleotide Sequencing/methods , Interferon-gamma/genetics , Interferon-gamma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Mice, Inbred C57BL , RNA, Messenger/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/genetics , Neoplasms/immunology , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Profiling/methods
17.
Am Soc Clin Oncol Educ Book ; 44(3): e432234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781557

ABSTRACT

Traditionally sarcomas have been considered immunologically quiet tumours, with low tumour mutational burden (TMB) and an immunosuppressive tumour microenvironment (TME), consisting of decreased T-cell infiltration and elevated levels of H1F1α, macrophages and neutrophils.1,2 However, research has shown that a subset of sarcomas are immunologically 'hot' with either high TMB, PDL-1 expression, CD8+ T cells or presence of tertiary lymphoid structures (TLS) demonstrating sensitivity to immunotherapy.3,4 Here, we review the current evidence for immunotherapy use in bone sarcomas (BS) and soft tissue sarcomas (STS), with immune checkpoint inhibitors (ICI) and adoptive cellular therapies including engineered T-cell therapies, chimeric antigen receptor (CAR) T-cell therapies, tumour infiltrating lymphocytes (TILs) and cancer vaccines and biomarkers of response.


Subject(s)
Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Sarcoma/therapy , Sarcoma/immunology , Immunotherapy/methods , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology
18.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1523-1535, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783813

ABSTRACT

The adoptive immunotherapy mediated by tumor-infiltrating lymphocytes (TILs) has shown definite efficacy against various solid tumors. However, the inefficiency of the conventional method based on in vitro expansion of TILs fails to achieve the cell count and high tumor-killing activity required for therapeutic purposes. This study investigated the effect of 3D tumor spheroids on the activation and expansion of TILs in vitro, aiming to provide a novel approach for the expansion of TILs. We procured TILs and primary tumor cells from surgical samples of lung cancer patients and then compared the impacts of lung cancer cell line NCI-H1975 and primary lung cancer cells cultured under 2D and 3D conditions on the activation, expansion, and anti-tumor activity of TILs. Furthermore, we added the programmed cell death protein 1 (PD-1) antibody into the co-culture of primary tumor cells and TILs within a 3D environment to assess the effects of the antibody on TILs. The results showed that compared with 2D cultured tumor cells, the 3D cultured H1975 cells significantly enhanced the expansion of TILs, increasing the proportion of CD3+/CD8+ cells in TILs to 61.6%. The 3D primary tumor model also enhanced the proportion of CD3+/CD8+ cells in TILs (45.5%, 54.4%), induced apoptosis of tumor epithelial cells and decreased the overall tumor cells survival rate (16.7%) after co-culture. PD-1 antibodies further improved the in vitro expansion capacity of TILs mediated by 3D tumor spheroids, resulting in the proportions of 50.9% and 57.0% for CD3+/CD8+ cells and enhancing the antitumor activity significantly (reducing the overall tumor survival rate to 9.36%). In summary, the use of 3D tumor spheroids significantly promoted the expansion and improved the anti-tumor effect of TILs, and the use of the PD-1 antibody further promoted the expansion and tumor-killing effect of TILs.


Subject(s)
Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Spheroids, Cellular , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Spheroids, Cellular/immunology , Cell Line, Tumor , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor/immunology , Immunotherapy, Adoptive , Coculture Techniques , Cell Culture Techniques , Tumor Cells, Cultured , Cell Proliferation
19.
J Pathol Clin Res ; 10(3): e12378, 2024 May.
Article in English | MEDLINE | ID: mdl-38778559

ABSTRACT

The efficacy of neoadjuvant chemotherapy (NACT) in patients with advanced gastric cancer (GC) varies greatly. Thus, we aimed to verify the predictive value of tumor-infiltrating immune cells (TIICs) on the treatment response to NACT and the prognosis of patients with advanced GC, and to explore the impact of NACT on the tumor immune microenvironment (TIME). Paired tumor tissues (pre- and post-NACT) from patients with advanced GC were collected for this study. TIICs were assessed using immunohistochemistry staining and analyzed using logistic regression to establish an immune microenvironment score for GC (ISGC score) and predict NACT efficacy. Kaplan-Meier curves were used to evaluate the survival outcome of patients. The results showed that TIME was dramatically heterogeneous between NACT response and nonresponse patients. In the validation cohort, the ISGC score demonstrated good predictive performance for treatment response to NACT. Moreover, high ISGC indicated better long-term survival in patients with advanced GC. Furthermore, tumor-infiltrated T cells (CD3+ and CD8+) and CD11c+ macrophages were significantly increased in the response group, while CD163+ macrophages and FOXP3+ Treg cells were decreased after NACT. However, opposite results were exhibited in the nonresponse group. Finally, we found that the percentage of programmed cell death ligand 1 (PD-L1)-positive tumors was 31% (32/104) pre-NACT and 49% (51/104) post-NACT, and almost all patients with elevated PD-L1 were in the NACT response group. The ISGC model accurately predicted NACT efficacy and classified patients with GC into different survival groups. NACT regulates the TIME in GC, which may provide strategies for personalized immunotherapy.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoadjuvant Therapy , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Female , Male , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Aged , Prognosis , Chemotherapy, Adjuvant , Treatment Outcome , Biomarkers, Tumor/analysis , Adult , Predictive Value of Tests
20.
Acta Oncol ; 63: 359-367, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779867

ABSTRACT

BACKGROUND: The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE: This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS: A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS: In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast,  ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION: Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.


Subject(s)
Breast Neoplasms , Disease Progression , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Killer Cells, Natural/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...