Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 13(7): 627, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35853868

ABSTRACT

Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.


Subject(s)
Histones , Lysine Acetyltransferase 5 , Lysine , Tumor Suppressor Protein p53 , Acetylation , Animals , Cell Cycle Checkpoints/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Histones/metabolism , Humans , Lysine/metabolism , Lysine Acetyltransferase 5/deficiency , Lysine Acetyltransferase 5/genetics , Lysine Acetyltransferase 5/metabolism , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
J Vis Exp ; (130)2017 12 07.
Article in English | MEDLINE | ID: mdl-29286399

ABSTRACT

The wound-healing assay is efficient and one of the most economical ways to study cell migration in vitro. Conventionally, images are taken at the beginning and end of an experiment using a phase-contrast microscope, and the migration abilities of cells are evaluated by the closure of wounds. However, cell movement is a dynamic phenomenon, and a conventional method does not allow for tracking single-cell movement. To improve current wound-healing assays, we use live-cell imaging techniques to monitor cell migration in real time. This method allows us to determine the cell migration rate based on a cell tracking system and provides a clearer distinction between cell migration and cell proliferation. Here, we demonstrate the use of live-cell imaging in wound-healing assays to study the different migration abilities of breast epithelial cells influenced by the presence of TIP60. As cell motility is highly dynamic, our method provides more insights into the processes of wound healing than a snapshot of wound closure taken with the traditional imaging techniques used for wound-healing assays.


Subject(s)
Breast/cytology , Breast/diagnostic imaging , Cell Movement/physiology , Lysine Acetyltransferase 5/deficiency , Cell Proliferation/physiology , Epithelial Cells/cytology , Female , Humans , Lysine Acetyltransferase 5/genetics , Lysine Acetyltransferase 5/metabolism , Wound Healing
3.
Cell Rep ; 19(4): 671-679, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28445719

ABSTRACT

Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.


Subject(s)
Cell Self Renewal/physiology , Lysine Acetyltransferase 5/metabolism , Trans-Activators/metabolism , Animals , Cell Differentiation , Cell Line , Chromatin/metabolism , Chromatin Assembly and Disassembly , Endoderm/metabolism , Endoderm/pathology , Gene Expression Regulation, Developmental , Histones/metabolism , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Lysine Acetyltransferase 5/deficiency , Lysine Acetyltransferase 5/genetics , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Trans-Activators/deficiency , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...