Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 70(6): 2123-2141, 2019 12.
Article in English | MEDLINE | ID: mdl-31090940

ABSTRACT

Cellular homeostais, that is normally maintained through autophagy, is disrupted in alcoholic liver disease (ALD). Because autophagy and exosome biogenesis share common elements, we hypothesized that increased exosome production in ALD may be linked to disruption of autophagic function. We found impaired autophagy both in ALD and alcoholic hepatitis (AH) mouse models and human livers with ALD as indicated by increased hepatic p62 and LC3-II levels. Alcohol reduced autophagy flux in vivo in chloroquine-treated mice as well as in vitro in hepatocytes and macrophages treated with bafilomycin A. Our results revealed that alcohol targets multiple steps in the autophagy pathway. Alcohol-related decrease in mechanistic target of rapamycin (mTOR) and Ras homolog enriched in brain (Rheb), that initiate autophagy, correlated with increased Beclin1 and autophagy-related protein 7 (Atg7), proteins involved in phagophore-autophagosome formation, in ALD. We found that alcohol disrupted autophagy function at the lysosomal level through decreased lysosomal-associated membrane protein 1 (LAMP1) and lysosomal-associated membrane protein 2 (LAMP2) in livers with ALD. We identified that micro-RNA 155 (miR-155), that is increased by alcohol, targets mTOR, Rheb, LAMP1, and LAMP2 in the authophagy pathway. Consistent with this, miR-155-deficient mice were protected from alcohol-induced disruption of autophagy and showed attenuated exosome production. Mechanistically, down-regulation of LAMP1 or LAMP2 increased exosome release in hepatocytes and macrophages in the presence and absence of alcohol. These results suggested that the alcohol-induced increase in exosome production was linked to disruption of autophagy and impaired autophagosome and lysosome function. Conclusion: Alcohol affects multiple genes in the autophagy pathway and impairs autophagic flux at the lysosome level in ALD. Inhibition of LAMP1 and LAMP2 promotes exosome release in ALD. We identified miR-155 as a mediator of alcohol-related regulation of autophagy and exosome production in hepatocytes and macrophages.


Subject(s)
Autophagy/physiology , Exosomes/physiology , Liver Diseases, Alcoholic/physiopathology , Lysosomes/physiology , MicroRNAs/physiology , Animals , Female , Hepatitis, Alcoholic/genetics , Hepatitis, Alcoholic/physiopathology , Hepatocytes/physiology , Humans , Liver Diseases, Alcoholic/genetics , Lysosomal-Associated Membrane Protein 1/physiology , Lysosomal-Associated Membrane Protein 2/physiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , RNA-Binding Proteins/metabolism , TOR Serine-Threonine Kinases/physiology
2.
Mol Oral Microbiol ; 28(4): 250-66, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23413785

ABSTRACT

The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.


Subject(s)
Osteoblasts/microbiology , Staphylococcus aureus/physiology , Streptococcus gordonii/physiology , Actins/antagonists & inhibitors , Adhesins, Bacterial/physiology , Bacterial Adhesion/physiology , Bone Resorption/immunology , Bone Resorption/microbiology , Cell Culture Techniques , Cell Line, Tumor , Colchicine/pharmacology , Cytochalasin D/pharmacology , Dental Materials/chemistry , Endocytosis/drug effects , Endocytosis/physiology , Fibronectins/physiology , Humans , Inflammation Mediators/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Lysosomal-Associated Membrane Protein 1/physiology , Microbial Viability , Monensin/pharmacology , Osteoblasts/immunology , Phagocytosis/physiology , Proton Ionophores/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/immunology , Streptococcus gordonii/drug effects , Streptococcus gordonii/immunology , Time Factors , Titanium/chemistry
3.
Nat Med ; 17(6): 700-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21552268

ABSTRACT

The natural killer (NK) cell receptor NKp30 is involved in the recognition of tumor and dendritic cells (DCs). Here we describe the influence of three NKp30 splice variants on the prognosis of gastrointestinal sarcoma (GIST), a malignancy that expresses NKp30 ligands and that is treated with NK-stimulatory KIT tyrosine kinase inhibitors. Healthy individuals and those with GIST show distinct patterns of transcription of functionally different NKp30 isoforms. In a retrospective analysis of 80 individuals with GIST, predominant expression of the immunosuppressive NKp30c isoform (over the immunostimulatory NKp30a and NKp30b isoforms) was associated with reduced survival of subjects, decreased NKp30-dependent tumor necrosis factor-α (TNF-α) and CD107a release, and defective interferon-γ (IFN-γ) and interleukin-12 (IL-12) secretion in the NK-DC cross-talk that could be restored by blocking of IL-10. Preferential NKp30c expression resulted partly from a single-nucleotide polymorphism at position 3790 in the 3' untranslated region of the gene encoding NKp30. The genetically determined NKp30 status predicts the clinical outcomes of individuals with GIST independently from KIT mutation.


Subject(s)
Alternative Splicing/genetics , Gastrointestinal Stromal Tumors/genetics , Natural Cytotoxicity Triggering Receptor 3/genetics , Alternative Splicing/physiology , Cell Line, Tumor , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/physiopathology , Humans , Interferon-gamma/physiology , Interleukin-12/physiology , Killer Cells, Natural/physiology , Lysosomal-Associated Membrane Protein 1/physiology , Natural Cytotoxicity Triggering Receptor 3/physiology , Polymorphism, Single Nucleotide/genetics , Prognosis , Protein Isoforms , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/physiology , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...