Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.534
Filter
1.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837708

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Subject(s)
ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
2.
Front Immunol ; 15: 1389194, 2024.
Article in English | MEDLINE | ID: mdl-38840905

ABSTRACT

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Subject(s)
Calcium Channels , Endosomes , Lysosomes , Neoplasms , Transient Receptor Potential Channels , Humans , Neoplasms/immunology , Neoplasms/metabolism , Lysosomes/metabolism , Lysosomes/immunology , Endosomes/metabolism , Endosomes/immunology , Animals , Transient Receptor Potential Channels/metabolism , Calcium Channels/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/immunology , Two-Pore Channels
3.
J Environ Sci (China) ; 145: 117-127, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844312

ABSTRACT

Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.


Subject(s)
Astrocytes , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Lysosomal-Associated Membrane Protein 2 , Lysosomes , Mice, Inbred ICR , Particulate Matter , alpha-Synuclein , Animals , Astrocytes/drug effects , alpha-Synuclein/metabolism , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Particulate Matter/toxicity , Air Pollutants/toxicity
4.
J Cell Mol Med ; 28(11): e18477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853458

ABSTRACT

Given the pathological role of Tau aggregation in Alzheimer's disease (AD), our laboratory previously developed the novel Tau aggregation inhibitor peptide, RI-AG03. As Tau aggregates accumulate intracellularly, it is essential that the peptide can traverse the cell membrane. Here we examine the cellular uptake and intracellular trafficking of RI-AG03, in both a free and liposome-conjugated form. We also characterize the impact of adding the cell-penetrating peptide (CPP) sequences, polyarginine (polyR) or transactivator of transcription (TAT), to RI-AG03. Our data show that liposome conjugation of CPP containing RI-AG03 peptides, with either the polyR or TAT sequence, increased cellular liposome association three-fold. Inhibition of macropinocytosis modestly reduced the uptake of unconjugated and RI-AG03-polyR-linked liposomes, while having no effect on RI-AG03-TAT-conjugated liposome uptake. Further supporting macropinocytosis-mediated internalization, a 'fair' co-localisation of the free and liposome-conjugated RI-AG03-polyR peptide with macropinosomes and lysosomes was observed. Interestingly, we also demonstrate that RI-AG03-polyR detaches from liposomes following cellular uptake, thereby largely evading organellar entrapment. Collectively, our data indicate that direct membrane penetration and macropinocytosis are key routes for the internalization of liposomes conjugated with CPP containing RI-AG03. Our study also demonstrates that peptide-liposomes are suitable nanocarriers for the cellular delivery of RI-AG03, furthering their potential use in targeting Tau pathology in AD.


Subject(s)
Cell-Penetrating Peptides , Liposomes , Nanoparticles , Pinocytosis , tau Proteins , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Liposomes/chemistry , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Nanoparticles/chemistry , Pinocytosis/drug effects , Peptides/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Lysosomes/metabolism , Drug Delivery Systems/methods
5.
Structure ; 32(6): 645-647, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848679

ABSTRACT

Phospholipase D (PLD) family proteins degrade phospholipids and nucleic acids. In the current issue of Structure, Yuan et al.1 report crystal structures of lysosomal PLD3 and PLD4 with and without a single-stranded DNA substrate. Their manuscript reveals a catalytic ping-pong mechanism and explains how disease-associated mutations compromise PLD3/4 function.


Subject(s)
Lysosomes , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Phospholipase D/genetics , Lysosomes/metabolism , Humans
6.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Article in English | MEDLINE | ID: mdl-38725855

ABSTRACT

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Subject(s)
Autophagy , Lysosomes , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Autophagy/physiology , Lysosomes/metabolism , Animals , Mice , Humans , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing
7.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709385

ABSTRACT

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Subject(s)
Cathepsin B , Lysosomes , Pancreatitis , Secretory Vesicles , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Animals , Lysosomes/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Cathepsin B/metabolism , Cathepsin B/genetics , Mice , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins/metabolism , Acute Disease , Acinar Cells/metabolism , Acinar Cells/pathology , Trypsinogen/metabolism , Trypsinogen/genetics , Ceruletide , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Mice, Inbred C57BL , Mice, Knockout
8.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710967

ABSTRACT

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Subject(s)
Membrane Proteins , Mutation , Nerve Tissue Proteins , Neurodegenerative Diseases , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Animals , Lysosomes/metabolism , Lysosomes/genetics , Amyloid/metabolism , Amyloid/genetics , Amyloid/chemistry
9.
Cell Mol Life Sci ; 81(1): 218, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758395

ABSTRACT

The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2ß and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2ß complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2ß interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2ß interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2ß interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2ß interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.


Subject(s)
Autophagy , Dynactin Complex , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Neurons , Lysosomes/metabolism , Dynactin Complex/metabolism , Animals , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Adaptor Protein Complex 2/metabolism , Sirolimus/pharmacology , Mice , Lysosomal-Associated Membrane Protein 1/metabolism , Autophagosomes/metabolism , Protein Binding
10.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38760174

ABSTRACT

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Subject(s)
Amyotrophic Lateral Sclerosis , Glycolates , Lactic Acid , Mitochondria , Protein Deglycase DJ-1 , RNA-Binding Protein FUS , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Glycolates/metabolism , Glycolates/pharmacology , Mitochondria/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Lactic Acid/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Membrane Potential, Mitochondrial , Motor Neurons/metabolism , Lysosomes/metabolism
11.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38697643

ABSTRACT

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Subject(s)
Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
12.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740758

ABSTRACT

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Subject(s)
Autophagy , Spermine Synthase , tau Proteins , Animals , tau Proteins/metabolism , Humans , Spermine Synthase/metabolism , Spermine Synthase/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Tauopathies/metabolism , Tauopathies/pathology , Neurons/metabolism , Neurons/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Spermidine/metabolism , Disease Models, Animal , Lysosomes/metabolism , Drosophila/metabolism , Mental Retardation, X-Linked
13.
J Transl Med ; 22(1): 449, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741129

ABSTRACT

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Subject(s)
DNA, Mitochondrial , Fibroblasts , Lysosomes , Mitochondria , Mitochondrial Encephalomyopathies , Nucleosides , Thymidine Phosphorylase , Humans , Lysosomes/metabolism , Thymidine Phosphorylase/metabolism , Thymidine Phosphorylase/deficiency , Thymidine Phosphorylase/genetics , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Encephalomyopathies/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Nucleosides/metabolism , Intestinal Pseudo-Obstruction/metabolism , Intestinal Pseudo-Obstruction/pathology , Intestinal Pseudo-Obstruction/enzymology , Intestinal Pseudo-Obstruction/genetics , Ophthalmoplegia/metabolism , Ophthalmoplegia/pathology , Ophthalmoplegia/congenital , Muscular Dystrophy, Oculopharyngeal/metabolism , Muscular Dystrophy, Oculopharyngeal/pathology , Male , Female , Skin/pathology , Skin/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism
14.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772716

ABSTRACT

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


Subject(s)
1-Deoxynojirimycin , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Mannosephosphates , alpha-Glucosidases , Glycogen Storage Disease Type II/drug therapy , Animals , Enzyme Replacement Therapy/methods , Mannosephosphates/metabolism , Mice , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/metabolism , alpha-Glucosidases/administration & dosage , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/metabolism
15.
Front Immunol ; 15: 1404846, 2024.
Article in English | MEDLINE | ID: mdl-38774881

ABSTRACT

Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.


Subject(s)
Lysosomes , Vesicular Transport Proteins , Humans , Lysosomes/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Animals , Chediak-Higashi Syndrome/genetics , Protein Transport , Mutation
16.
Nat Commun ; 15(1): 3711, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697966

ABSTRACT

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Subject(s)
Adaptor Proteins, Signal Transducing , Fusion Regulatory Protein 1, Heavy Chain , Large Neutral Amino Acid-Transporter 1 , Lipoylation , Membrane Proteins , Phosphatidylethanolamines , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Phosphatidylethanolamines/metabolism , Lysosomes/metabolism , Cell Membrane/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , HEK293 Cells , Protein Multimerization , Protein Binding , Mass Spectrometry , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration
17.
Sci Rep ; 14(1): 10146, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698024

ABSTRACT

The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.


Subject(s)
Endosomes , Vesicular Transport Proteins , Endosomes/metabolism , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Lysosomes/metabolism , Protein Subunits/metabolism , Autophagy , Autophagosomes/metabolism , HeLa Cells , Protein Binding
18.
Anal Chem ; 96(19): 7479-7486, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38689560

ABSTRACT

In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, PDM-NO, which can discriminate activated microglia from their resting state. The nonfluorescent PDM-NO exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. PDM-NO demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, PDM-NO is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.


Subject(s)
COVID-19 , Fluorescent Dyes , Lysosomes , Microglia , Nitric Oxide , Phagocytosis , SARS-CoV-2 , Microglia/virology , Microglia/metabolism , SARS-CoV-2/isolation & purification , Humans , Lysosomes/metabolism , Nitric Oxide/metabolism , Nitric Oxide/analysis , COVID-19/virology , COVID-19/diagnosis , COVID-19/metabolism , Fluorescent Dyes/chemistry , RNA, Viral/analysis , RNA, Viral/metabolism , Neuroinflammatory Diseases , Cell Line , Phenotype
19.
Arch Biochem Biophys ; 756: 110020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692471

ABSTRACT

Iron deposits in the brain are a natural consequence of aging. Iron accumulation, especially in the form of labile iron, can trigger a cascade of adverse effects, eventually leading to neurodegeneration and cognitive decline. Aging also increases the dysfunction of cellular proteostasis. The question of whether iron alters proteostasis is now being pondered. Herein, we investigated the effect of ferric citrate, considered as labile iron, on various aspects of proteostasis of neuronal cell lines, and also established an animal model having a labile iron diet in order to evaluate proteostasis alteration in the brain along with behavioral effects. According to an in vitro study, labile iron was found to activate lysosome formation but inhibits lysosomal clearance function. Furthermore, the presence of labile iron can alter autophagic flux and can also induce the accumulation of protein aggregates. RNA-sequencing analysis further reveals the upregulation of various terms related to proteostasis along with neurodegenerative disease-related terms. According to an in vivo study, a labile iron-rich diet does not induce iron overload conditions and was not detrimental to the behavior of male Wistar rats. However, an iron-rich diet can promote iron accumulation in a region-dependent manner. By staining for autophagic markers and misfolding proteins in the cerebral cortex and hippocampus, an iron-rich diet was actually found to alter autophagy and induce an accumulation of misfolding proteins. These findings emphasize the importance of labile iron on brain cell proteostasis, which could be implicated in developing of neurological diseases.


Subject(s)
Brain , Iron , Neurodegenerative Diseases , Proteostasis , Rats, Wistar , Animals , Proteostasis/drug effects , Neurodegenerative Diseases/metabolism , Male , Iron/metabolism , Rats , Brain/metabolism , Brain/drug effects , Autophagy/drug effects , Humans , Lysosomes/metabolism
20.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Article in English | MEDLINE | ID: mdl-38702933

ABSTRACT

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Subject(s)
Exosomes , Mice, Inbred C57BL , Microglia , Parkinson Disease , Vacuolar Proton-Translocating ATPases , alpha-Synuclein , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , alpha-Synuclein/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Microglia/metabolism , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...