Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.436
Filter
1.
Aging (Albany NY) ; 16(9): 7915-7927, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38728237

ABSTRACT

OBJECTIVE: This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS: We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS: IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION: IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.


Subject(s)
Chondrocytes , MAP Kinase Kinase Kinases , MicroRNAs , Animals , Humans , Male , Rats , Apoptosis/genetics , Cell Proliferation/genetics , Chondrocytes/metabolism , Disease Progression , Interleukins/metabolism , Interleukins/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Rats, Sprague-Dawley
2.
Neoplasia ; 53: 101003, 2024 07.
Article in English | MEDLINE | ID: mdl-38759377

ABSTRACT

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Subject(s)
Endoplasmic Reticulum , MAP Kinase Kinase Kinases , Microtubules , Signal Transduction , Microtubules/metabolism , Endoplasmic Reticulum/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Acetylation , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Acetyltransferases/metabolism , Acetyltransferases/genetics , Endoplasmic Reticulum Stress , Mice , Microtubule Proteins
3.
Nat Commun ; 15(1): 4216, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760394

ABSTRACT

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Alanine , Antimicrobial Peptides , Macrophages , Mycobacterium tuberculosis , NF-kappa B , Tuberculosis , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Mice , NF-kappa B/metabolism , Humans , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Alanine/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Alanine Dehydrogenase/metabolism , Alanine Dehydrogenase/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction , Mice, Inbred C57BL , RAW 264.7 Cells , Female
4.
BMC Biol ; 22(1): 122, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807188

ABSTRACT

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Subject(s)
Phosphoprotein Phosphatases , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Humans , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis , Immunity, Innate
5.
Nat Commun ; 15(1): 4340, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773142

ABSTRACT

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Subject(s)
Apoptosis Regulatory Proteins , Disease Models, Animal , Lipopolysaccharides , MAP Kinase Kinase Kinases , Macrophages , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Phosphorylation , Humans , Ubiquitination , Zearalenone/analogs & derivatives , Zearalenone/pharmacology , Zearalenone/administration & dosage , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Inflammation/metabolism , Inflammation/pathology , Phosphoric Monoester Hydrolases/metabolism , Mice, Knockout , Lactones , Resorcinols
6.
Biol Direct ; 19(1): 34, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698487

ABSTRACT

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Subject(s)
Epithelial-Mesenchymal Transition , MAP Kinase Kinase Kinases , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Animals , Mice , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Cell Movement , Neoplasm Metastasis
7.
Science ; 384(6697): 785-792, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753784

ABSTRACT

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Subject(s)
Apoptosis , DNA Damage , Protein Biosynthesis , Ribosomes , Tumor Suppressor Protein p53 , Humans , Cell Line, Tumor , Codon/genetics , Leucine/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ribosomes/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism
8.
Biochemistry ; 63(11): 1474-1492, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38743619

ABSTRACT

Allostery is a fundamental mechanism driving biomolecular processes that holds significant therapeutic concern. Our study rigorously investigates how two distinct machine-learning algorithms uniquely classify two already close-to-active DFG-in states of TAK1, differing just by the presence or absence of its allosteric activator TAB1, from an ensemble mixture of conformations (obtained from 2.4 µs molecular dynamics (MD) simulations). The novelty, however, lies in understanding the deeper algorithmic potentials to systematically derive a diverse set of differential residue connectivity features that reconstruct the essential mechanistic architecture for TAK1-TAB1 allostery in such a close-to-active biochemical scenario. While the recursive, random forest-based workflow displays the potential of conducting discretized, hierarchical derivation of allosteric features, a multilayer perceptron-based approach gains considerable efficacy in revealing fluid connected patterns of features when hybridized with mutual information scoring. Interestingly, both pipelines benchmark similar directions of functional conformational changes for TAK1's activation. The findings significantly advance the depth of mechanistic understanding by highlighting crucial activation signatures along a directed C-lobe → activation loop → ATP pocket channel of information flow, including (1) the αF-αE biterminal alignments and (2) the "catalytic" drift of the activation loop toward kinase active site. Besides, some novel allosteric hotspots (K253, Y206, N189, etc.) are further recognized as TAB1 sensors, transducers, and responders, including a benchmark E70 mutation site, precisely mapping the important structural segments for sequential allosteric execution. Hence, our work demonstrates how to navigate through greater structural depths and dimensions of dynamic allosteric machineries just by leveraging standard ML methods in suitable streamlined workflows adaptive to the specific system and objectives.


Subject(s)
MAP Kinase Kinase Kinases , Machine Learning , Molecular Dynamics Simulation , Allosteric Regulation , MAP Kinase Kinase Kinases/chemistry , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Humans , Protein Conformation , Workflow , Algorithms
9.
PLoS One ; 19(4): e0300539, 2024.
Article in English | MEDLINE | ID: mdl-38574058

ABSTRACT

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Subject(s)
Actins , Axons , Axons/metabolism , Nocodazole/pharmacology , Actins/metabolism , Leucine Zippers , Nerve Regeneration/physiology , Cytoskeleton/metabolism , Homeostasis , MAP Kinase Kinase Kinases/genetics
10.
PeerJ ; 12: e16967, 2024.
Article in English | MEDLINE | ID: mdl-38680890

ABSTRACT

Background: Ovarian cancer (OC) is the most lethal malignancy in women owing to its diagnosis only at the advanced stage. Elucidation of its molecular pathogenesis may help identify new tumor markers and targets for therapy. Circular RNAs (circRNAs) are stable, conserved, and functional biomolecules that can be used as effective biomarkers for various cancers. Methods: In this study, a potential circRNA related to early diagnosis of OC, circMAN1A2, was analyzed. Overexpression/knockdown of circMAN1A2 in OC cells was used to decipher its effects on cell proliferation with a Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU), cell cycle, clone formation, and wound healing assay. RNA pull-down and Dual luciferase assay were used to explain the underlying mechanism by which circMAN1A2 regulates OC cell proliferation. In vivo, the effect of circMAN1A2 in OC was evaluated using nude mouse xenograft experiments. Results: CircMAN1A2 was highly expressed in OC and promoted proliferation, clone formation, and tumorigenicity of OC cells. In addition, we found that circMAN1A2 acted as a sponge for microRNA (miR)-135a-3p; miR-135a-3p directly targeted the 3' untranslated region of interleukin 1 receptor accessory protein (IL1RAP) in OC cells, thereby regulating the phosphorylation of transforming growth factor-beta activated kinase 1 (TAK1), which resulted in promotion of OC cell growth. Conclusions: CircMAN1A2 promotes OC cell proliferation by inhibiting the miR-135a-3p/IL1RAP/TAK1 axis. In conclusion, circMAN1A2 may be a biomarker for early detection of OC and a target for subsequent therapy.


Subject(s)
Mannosidases , MicroRNAs , Ovarian Neoplasms , RNA, Circular , Signal Transduction , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction/genetics , Mannosidases/genetics
11.
Adv Sci (Weinh) ; 11(21): e2309002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569496

ABSTRACT

Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.


Subject(s)
MAP Kinase Kinase Kinases , Necroptosis , Nedd4 Ubiquitin Protein Ligases , Pre-Eclampsia , Thrombospondin 1 , Trophoblasts , Ubiquitination , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Female , Pregnancy , Trophoblasts/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Adult , Placenta/metabolism
12.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451290

ABSTRACT

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Subject(s)
Craniosynostoses , Ectodermal Dysplasia , Hearing Loss, Sensorineural , Heterozygote , Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Male , Female , Craniosynostoses/genetics , Phenotype , Child, Preschool , Limb Deformities, Congenital/genetics , Child , Mutation , Infant , MAP Kinase Kinase Kinases/genetics
13.
Exp Hematol ; 133: 104205, 2024 May.
Article in English | MEDLINE | ID: mdl-38490577

ABSTRACT

Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-ß-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.


Subject(s)
Hematopoiesis , Mice, Knockout , Phosphoprotein Phosphatases , Animals , Mice , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/deficiency , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hematopoietic Stem Cells/metabolism , Embryo Loss/genetics , Embryo Loss/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Female
14.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456949

ABSTRACT

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Subject(s)
Brain Ischemia , Sumoylation , Humans , MAP Kinase Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Signal Transduction/physiology , Brain Ischemia/metabolism , Cognition , Molecular Chaperones/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism
15.
Am J Surg Pathol ; 48(4): 437-446, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38233731

ABSTRACT

Previous studies regarding the clinical behavior of Spitz neoplasms lack genomic characterization. We aim to assess our hypothesis that most MAP3K8 Spitz neoplasms are indolent despite MAP3K8 being the single most common driver of Spitz melanoma. Further, we aim to identify genomic features associated with aggressive behavior and to better characterize the morphology of these cases. We analyzed the outcomes of MAP3K8 Spitz neoplasms. We also performed a meta-analysis of the outcomes of MAP3K8 Spitz from the literature. Morphologic features were compared with other variants of Spitz using a Student t test and χ 2 test. Two of 35 cases resulted in local recurrence and one of these cases had local regional metastasis; all other cases had no evidence of recurrence (mean follow-up time: 33 mo). MAP3K8 Spitz only rarely results in aggressive behavior. Metastatic cases have genomic mutations associated with tumor progression. Morphologically, MAP3K8 Spitz neoplasms frequently showed nodular silhouette, large cell size, epithelioid morphology, and severe nuclear atypia resulting in more frequent diagnosis as Spitz melanoma. Most MAP3K8 Spitz neoplasms have excellent prognoses, apart from rare cases harboring additional genomic abnormalities associated with tumor progression.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Melanoma/pathology , Retrospective Studies , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/pathology , Mutation , Proto-Oncogene Proteins/genetics , MAP Kinase Kinase Kinases/genetics
16.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38118452

ABSTRACT

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Subject(s)
JNK Mitogen-Activated Protein Kinases , MAP Kinase Kinase Kinases , Animals , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Signal Transduction , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Mammals/metabolism
17.
Transl Psychiatry ; 13(1): 375, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057311

ABSTRACT

Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Competitive Endogenous , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Membrane Proteins/genetics
18.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37811720

ABSTRACT

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Subject(s)
Aortic Coarctation , Heart Defects, Congenital , Infant, Newborn , Humans , Myocytes, Cardiac , Endothelial Cells , Heart Defects, Congenital/genetics , Mutation/genetics , MAP Kinase Kinase Kinases/genetics
20.
Elife ; 122023 08 09.
Article in English | MEDLINE | ID: mdl-37555828

ABSTRACT

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Subject(s)
MAP Kinase Kinase Kinases , Tauopathies , Animals , Humans , Mice , Brain/pathology , Cells, Cultured , Dendritic Spines/pathology , Lipopolysaccharides , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases/pathology , Sequence Analysis, RNA , Single-Cell Analysis , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...