Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840237

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Subject(s)
Carcinoma, Renal Cell , DNA Repair , Kidney Neoplasms , Survivin , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/radiotherapy , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Animals , Survivin/metabolism , Humans , Mice , Cell Line, Tumor , Kidney Neoplasms/pathology , Kidney Neoplasms/radiotherapy , Kidney Neoplasms/drug therapy , DNA Repair/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Mitosis/drug effects , Mitosis/radiation effects , Imidazoles/pharmacology , DNA Damage , Everolimus/pharmacology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Liposomes/pharmacology , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use
2.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Article in English | MEDLINE | ID: mdl-38725843

ABSTRACT

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , MTOR Inhibitors , Proto-Oncogene Protein c-ets-1 , Humans , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Signal Transduction/drug effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice , Mice, Nude
3.
Nat Commun ; 15(1): 3664, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693123

ABSTRACT

The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.


Subject(s)
Carcinoma, Squamous Cell , Graft Rejection , Heart Transplantation , Herpesvirus 1, Human , MTOR Inhibitors , Heart Transplantation/adverse effects , Humans , Male , Graft Rejection/prevention & control , Graft Rejection/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/drug therapy , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Middle Aged , Everolimus/pharmacology , Everolimus/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors
4.
Clin Transl Med ; 14(5): e1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38711203

ABSTRACT

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Subject(s)
Leiomyosarcoma , Tumor Microenvironment , Uterine Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Leiomyosarcoma/drug therapy , Humans , Female , Uterine Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Animals , Mice , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use
5.
Anticancer Res ; 44(6): 2555-2565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821604

ABSTRACT

BACKGROUND/AIM: Breast cancer is the most prevalent form of cancer among women worldwide, with a high mortality rate. While the most common cause of breast cancer death is metastasis, there is currently no potential treatment for patients at the metastatic stage. The present study investigated the potential of using a combination of HSP90 and mTOR inhibitor in the treatment of breast cancer cell growth, migration, and invasion. MATERIALS AND METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) was used to investigate the gene expression profiles. Western blot analysis and fluorescence staining were used for protein expression and localization, respectively. MTT, wound healing, and transwell invasion assays were used for cell proliferation, migration, and invasion, respectively. RESULTS: GEPIA demonstrated that HSP90 expression was significantly higher in breast invasive carcinoma compared to other tumor types, and this expression correlated with mTOR levels. Treatment with 17-AAG, an HSP90 inhibitor, and Torkinib, an mTORC1/2 inhibitor, significantly inhibited cell proliferation. Moreover, combination treatment led to down-regulation of AKT. Morphological changes revealed a reduction in F-actin intensity, a marked reduction of YAP, with interference in nuclear localization. CONCLUSION: Targeting HSP90 and mTOR has the potential to suppress breast cancer cell growth and progression by disrupting AKT signaling and inhibiting F-actin polymerization. This combination treatment may hold promise as a therapeutic strategy for breast cancer treatment that ameliorates adverse effects of a single treatment.


Subject(s)
Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Phosphorylation/drug effects , Actins/metabolism , Actins/genetics , Cell Line, Tumor , Neoplasm Invasiveness , Signal Transduction/drug effects , Lactams, Macrocyclic/pharmacology , Benzoquinones/pharmacology , MTOR Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
6.
J Med Chem ; 67(9): 7330-7358, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661655

ABSTRACT

The aberrant activation of the PI3K/mTOR signaling pathway is implicated in various human cancers. Thus, the development of inhibitors targeting mTOR has attracted considerable attention. In this study, we used a structure-based drug design strategy to discover a highly potent and kinase-selective mTOR inhibitor 24 (PT-88), which demonstrated an mTOR inhibitory IC50 value of 1.2 nM without obvious inhibition against another 195 kinases from the kinase profiling screening. PT-88 displayed selective inhibition against MCF-7 cells (IC50: 0.74 µM) with high biosafety against normal cells, in which autophagy induced by mTOR inhibition was implicated. After successful encapsulation in a lipodisc formulation, PT-88 demonstrated favorable pharmacokinetic and biosafety profiles and exerted a large antitumor effect in an MCF-7 subcutaneous bearing nude mice model. Our study shows the discovery of a highly selective mTOR inhibitor using a structure-based drug discovery strategy and provides a promising antitumor candidate for future study and development.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Drug Design , MTOR Inhibitors , Mice, Nude , TOR Serine-Threonine Kinases , Triazines , Humans , Animals , Triazines/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/pharmacokinetics , Triazines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/chemistry , Structure-Activity Relationship , MCF-7 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Mice, Inbred BALB C , Autophagy/drug effects
7.
EBioMedicine ; 103: 105099, 2024 May.
Article in English | MEDLINE | ID: mdl-38604089

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS: Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS: Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION: The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING: This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Animals , Humans , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Nanoparticles/chemistry , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Morpholines/chemistry , Morpholines/pharmacology , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemistry , Disease Models, Animal
8.
Drug Discov Ther ; 18(2): 134-139, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38569833

ABSTRACT

Both PAK1 (RAC/CDC42-activating kinase 1) and TOR (Target of Rapamycin) are among the major oncogenic/ageing kinases. However, they play the opposite role in our immune system, namely immune system is suppressed by PAK1, while it requires TOR. Thus, PAK1-blockers, would be more effective for therapy of cancers, than TOR-blockers. Since 2015 when we discovered genetically that PDGF-induced melanogenesis depends on "PAK1", we are able to screening a series of PAK1-blockers as melanogenesis-inhibitors which could eventually promote longevity. Interestingly, rapamycin, the first TOR-inhibitor, promotes melanogenesis, clearly indicating that TOR suppresses melanogenesis. However, a new TOR-inhibitor called TORin-1 no longer suppresses immune system, and blocks melanogenesis in cell culture. These observations strongly indicate that TORin-1 acts as PAK1-blockers, instead of TOR-blockers, in vivo. Thus, it is most likely that melanogenesis in cell culture could enable us to discriminate PAK1-blockers from TORblockers.


Subject(s)
Imatinib Mesylate , Pyrimidines , Sirolimus , TOR Serine-Threonine Kinases , p21-Activated Kinases , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Humans , TOR Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , Sirolimus/pharmacology , Sirolimus/therapeutic use , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Melanins/biosynthesis , Melanins/metabolism , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Naphthyridines
9.
Bioorg Chem ; 147: 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583254

ABSTRACT

Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, ß, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Phosphoinositide-3 Kinase Inhibitors , Quinolines , TOR Serine-Threonine Kinases , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/chemistry , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism
10.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834269

ABSTRACT

An imbalance in PI3K/AKT/mTOR pathway signaling in humans often leads to cancer. Therefore, the investigation of anti-cancer medications that inhibit PI3K and mTOR has emerged as a significant area of research. The aim of this study was to explore the effect of XIN-10, a dual PI3K/mTOR inhibitor, on the growth as well as antiproliferation of tumor cells and to investigate the anti-tumor mechanism of XIN-10 by further exploration. We screened three cell lines for more in-depth exploration by MTT experiments. From the AO staining, cell cycle and apoptosis, we found that XIN-10 had a more obvious inhibitory effect on the MCF-7 breast cancer cell line and used this as a selection for more in-depth experiments. A series of in vitro and in vivo experiments showed that XIN-10 has superior antiproliferative activity compared with the positive drug GDC-0941. Meanwhile, through the results of protein blotting and PCR experiments, we concluded that XIN-10 can block the activation of the downstream pathway of mTOR by inhibiting the phosphorylation of AKT(S473) as well as having significant inhibitory effects on the gene exons of PI3K and mTOR. These results indicate that XIN-10 is a highly potent inhibitor with low toxicity and has a strong potential to be developed as a novel PI3Kα/mTOR dual inhibitor candidate for the treatment of positive breast cancer.


Subject(s)
Breast Neoplasms , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Female , Humans , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511214

ABSTRACT

To establish an appropriate in vitro model for the local environment of cardiomyocytes, three-dimensional (3D) spheroids derived from H9c2 cardiomyoblasts were prepared, and their morphological, biophysical phase contrast and biochemical characteristics were evaluated. The 3D H9c2 spheroids were successfully obtained, the sizes of the spheroids decreased, and they became stiffer during 3-4 days. In contrast to the cell multiplication that occurs in conventional 2D planar cell cultures, the 3D H9c2 spheroids developed into a more mature form without any cell multiplication being detected. qPCR analyses of the 3D H9c2 spheroids indicated that the production of collagen4 (COL4) and fibronectin (FN), connexin43 (CX43), ß-catenin, N-cadherin, STAT3, and HIF1 molecules had increased and that the production of COL6 and α-smooth muscle actin (α-SMA) molecules had decreased as compared to 2D cultured cells. In addition, treatment with rapamycin (Rapa), an mTOR complex (mTORC) 1 inhibitor, and Torin 1, an mTORC1/2 inhibitor, resulted in significantly decreased cell densities of the 2D cultured H9c2 cells, but the size and stiffness of the H9c2 cells within the 3D spheroids were reduced with the gene expressions of several of the above several factors being reduced. The metabolic responses to mTOR modulators were also different between the 2D and 3D cultures. These results suggest that as unique aspects of the local environments of the 3D spheroids, the spontaneous expression of GJ-related molecules and hypoxia within the core may be associated with their maturation, suggesting that this may become a useful in vitro model that replicates the local environment of cardiomyocytes.


Subject(s)
MTOR Inhibitors , Spheroids, Cellular , Animals , Rats , Cell Culture Techniques/methods , Cells, Cultured , MTOR Inhibitors/pharmacology , Spheroids, Cellular/drug effects , TOR Serine-Threonine Kinases
12.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36883564

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant malignancy with limited treatment options. Bromodomain and extraterminal domain inhibitors (BETis) have shown promising preclinical activity in SCLC, but the broad sensitivity spectrum limits their clinical prospects. Here, we performed unbiased high-throughput drug combination screens to identify therapeutics that could augment the antitumor activities of BETis in SCLC. We found that multiple drugs targeting the PI-3K-AKT-mTOR pathway synergize with BETis, among which mTOR inhibitors (mTORis) show the highest synergy. Using various molecular subtypes of the xenograft models derived from patients with SCLC, we confirmed that mTOR inhibition potentiates the antitumor activities of BETis in vivo without substantially increasing toxicity. Furthermore, BETis induce apoptosis in both in vitro and in vivo SCLC models, and this antitumor effect is further amplified by combining mTOR inhibition. Mechanistically, BETis induce apoptosis in SCLC by activating the intrinsic apoptotic pathway. However, BET inhibition leads to RSK3 upregulation, which promotes survival by activating the TSC2-mTOR-p70S6K1-BAD cascade. mTORis block this protective signaling and augment the apoptosis induced by BET inhibition. Our findings reveal a critical role of RSK3 induction in tumor survival upon BET inhibition and warrant further evaluation of the combination of mTORis and BETis in patients with SCLC.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , MTOR Inhibitors , Small Cell Lung Carcinoma , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis/physiology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , TOR Serine-Threonine Kinases
13.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496978

ABSTRACT

Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fatty Acid Desaturases , Lung Neoplasms , MTOR Inhibitors , Phosphoinositide-3 Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Drug Resistance, Neoplasm , Fatty Acid Desaturases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , MTOR Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
Nature ; 609(7928): 822-828, 2022 09.
Article in English | MEDLINE | ID: mdl-36104566

ABSTRACT

On-target-off-tissue drug engagement is an important source of adverse effects that constrains the therapeutic window of drug candidates1,2. In diseases of the central nervous system, drugs with brain-restricted pharmacology are highly desirable. Here we report a strategy to achieve inhibition of mammalian target of rapamycin (mTOR) while sparing mTOR activity elsewhere through the use of the brain-permeable mTOR inhibitor RapaLink-1 and the brain-impermeable FKBP12 ligand RapaBlock. We show that this drug combination mitigates the systemic effects of mTOR inhibitors but retains the efficacy of RapaLink-1 in glioblastoma xenografts. We further present a general method to design cell-permeable, FKBP12-dependent kinase inhibitors from known drug scaffolds. These inhibitors are sensitive to deactivation by RapaBlock, enabling the brain-restricted inhibition of their respective kinase targets.


Subject(s)
Brain , MTOR Inhibitors , Sirolimus , TOR Serine-Threonine Kinases , Humans , Brain/drug effects , Brain/metabolism , Drug Therapy, Combination , Glioblastoma/drug therapy , Ligands , MTOR Inhibitors/metabolism , MTOR Inhibitors/pharmacokinetics , MTOR Inhibitors/pharmacology , Sirolimus/analogs & derivatives , Tacrolimus Binding Protein 1A/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 298(4): 101750, 2022 04.
Article in English | MEDLINE | ID: mdl-35216969

ABSTRACT

DEPTOR is a 48 kDa protein upregulated in multiple myeloma (MM) cells. DEPTOR inhibits mTOR and, by repressing a negative feedback loop, promotes AKT activation. We previously identified a compound that binds to DEPTOR in MM cells and induces its proteasomal degradation. To identify the mechanism of degradation, here, we screened for drug-induced posttranslational modifications and identified reduced phosphorylation of DEPTOR on serine 235 (S235). We show that an S235 phosphomimetic DEPTOR mutant was resistant to degradation, confirming the importance of this posttranslational modification. In addition, a DEPTOR mutant with a serine-to-alanine substitution at S235 could only be expressed upon concurrent proteasome inhibition. Thus, S235 phosphorylation regulates DEPTOR stability. Screening the DEPTOR interactome identified that the association of USP-7 deubiquitinase with DEPTOR was dependent upon S235 phosphorylation. Inhibition of USP-7 activity resulted in DEPTOR polyubiquitination and degradation. A scansite search suggested that ERK1 may be responsible for S235 phosphorylation, which was confirmed through the use of inhibitors, ERK1 knockdown, and an in vitro kinase assay. Inhibition of ERK1 also downregulated AKT phosphorylation. To test if DEPTOR phosphorylation mediated this crosstalk, MM cells were transfected with WT or phosphomimetic DEPTOR and exposed to ERK inhibitors. Although WT DEPTOR had no effect on the inhibition of AKT phosphorylation, the phosphomimetic DEPTOR prevented inhibition. These results indicate that ERK1 maintains AKT activity in MM cells via phosphorylation of DEPTOR. We propose that DEPTOR-dependent crosstalk provides MM cells with a viability-promoting signal (through AKT) when proliferation is stimulated (through ERK).


Subject(s)
Intracellular Signaling Peptides and Proteins , Multiple Myeloma , Proto-Oncogene Proteins c-akt , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MTOR Inhibitors/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Mutation , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Signal Transduction
16.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35132962

ABSTRACT

Aortic dissection and rupture are triggered by decreased vascular wall strength and/or increased mechanical loads. We investigated the role of mTOR signaling in aortopathy using a well-described model of angiotensin II-induced dissection, aneurysm, or rupture of the suprarenal abdominal aorta in Apoe-deficient mice. Although not widely appreciated, nonlethal hemorrhagic lesions present as pseudoaneurysms without significant dissection in this model. Angiotensin II-induced aortic tears result in free rupture, contained rupture with subadventitial hematoma (forming pseudoaneurysms), dilatation, or healing, while the media invariably thickens regardless of mural tears. Medial thickening results from smooth muscle cell hypertrophy and extracellular matrix accumulation, including matricellular proteins. Angiotensin II activates mTOR signaling in vascular wall cells, and inhibition of mTOR signaling by rapamycin prevents aortic rupture but promotes dissection. Decreased aortic rupture correlates with decreased inflammation and metalloproteinase expression, whereas extensive dissection correlates with induction of matricellular proteins that modulate adhesion of vascular cells. Thus, mTOR activation in vascular wall cells determines whether aortic tears progress to dissection or rupture. Previous mechanistic studies of aortic aneurysm and dissection by angiotensin II in Apoe-deficient mice should be reinterpreted as clinically relevant to pseudoaneurysms, and mTOR inhibition for aortic disease should be explored with caution.


Subject(s)
Aneurysm, False/prevention & control , Aortic Aneurysm, Thoracic/prevention & control , Aortic Rupture/prevention & control , Gene Expression Regulation , MTOR Inhibitors/pharmacology , TOR Serine-Threonine Kinases/genetics , Aneurysm, False/genetics , Aneurysm, False/metabolism , Angiotensin II/toxicity , Animals , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Rupture/genetics , Disease Models, Animal , Disease Progression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , RNA/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/biosynthesis
17.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35064010

ABSTRACT

BACKGROUND: T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing. METHODS: By screening a library of 52 Food and Drug Administration approved kinase inhibitors for their impact on T cell proliferation and cytokine release after CD3 stimulation, we identified mTOR, JAK and Src kinases inhibitors as potential candidates to modulate TCB-mediated cytokine release at pharmacologically active doses. Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of mTOR, JAK and Src kinase inhibitors combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB and CD19-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. The combination of mTOR, JAK and Src kinase inhibitors together with CD19-TCB was evaluated in vivo in non-tumor bearing stem cell humanized NSG mice in terms of B cell depletion and in a lymphoma patient-derived xenograft (PDX) model in humanized NSG mice in terms of antitumor efficacy. RESULTS: The effect of Src inhibitors differed from those of mTOR and JAK inhibitors with the suppression of CD19-TCB-induced tumor cell lysis in vitro, whereas mTOR and JAK inhibitors primarily affected TCB-mediated cytokine release. Importantly, we confirmed in vivo that Src, JAK and mTOR inhibitors strongly reduced CD19-TCB-induced cytokine release. In humanized NSG mice, continuous treatment with a Src inhibitor prevented CD19-TCB-mediated B cell depletion in contrast to mTOR and JAK inhibitors, which retained CD19-TCB efficacy. Ultimately, transient treatment with Src, mTOR and JAK inhibitors minimally interfered with antitumor efficacy in a lymphoma PDX model. CONCLUSIONS: Taken together, these data support further evaluation of the use of Src, JAK and mTOR inhibitors as prophylactic treatment to prevent occurrence of CRS.


Subject(s)
Antibodies, Bispecific/drug effects , Cytokines/drug effects , Immunotherapy/methods , Janus Kinase Inhibitors/therapeutic use , MTOR Inhibitors/therapeutic use , Animals , Humans , Janus Kinase Inhibitors/pharmacology , MTOR Inhibitors/pharmacology , Mice
18.
Mol Biol Rep ; 49(1): 451-461, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34731371

ABSTRACT

BACKGROUND: Sulforaphane (SFN) is a kind of isothiocyanate from cruciferous vegetables with extensive anti-tumor activity. Esophageal squamous cell carcinoma (ESCC) is a popular malignancy in East Asia, East and South Africa, while the more efficient medicines and therapeutic strategies are still lack. This study aims to explore the anti-tumor activity of SFN alone and combined with Akt/mTOR pathway inhibitors as well as the potential molecular mechanism in ESCC. METHODS AND RESULTS: Cell proliferation, migration, cell cycle phase, apoptosis and protein expression were detected with MTT assay, clone formation experiment, wound healing assays, flow cytometry and Western blot, respectively, after ESCC cells ECa109 and EC9706 treated with SFN alone or combined with Akt/mTOR inhibitors. Xenograft models were used to evaluate the efficiency and mechanism of SFN combined with PP242 in vivo. The results showed that SFN significantly inhibited the viability and induced apoptosis of ECa109 and EC9706 cells by increasing expression of Cleaved-caspase 9. SFN combined with PP242, but not MK2206 and RAD001, synergetic inhibited proliferation of ESCC cells. Moreover, compared to SFN alone, combination of SFN and PP242 had stronger inhibiting efficiency on clone formation, cell migratory, cell cycle phase and growth of xenografts, as well as the more powerful apoptosis-inducing effects on ESCC. The mechanism was that PP242 abrogated the promoting effects of SFN on p-p70S6K (Thr389) and p-Akt (Ser473) in ESCC. CONCLUSIONS: Our findings demonstrate that PP242 enhances the anti-tumor activity of SFN by blocking SFN-induced activation of Akt/mTOR pathway in ESCC, which provides a rationale for treating ESCC using SFN combined with Akt/mTOR pathway inhibitors.


Subject(s)
Indoles/pharmacology , Isothiocyanates/pharmacology , MTOR Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Purines/pharmacology , Signal Transduction/drug effects , Sulfoxides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Esophageal Neoplasms , Humans , Immunophenotyping , Mice , Models, Biological , Xenograft Model Antitumor Assays
19.
Cancer Lett ; 524: 219-231, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34673129

ABSTRACT

Endometrial cancer (EC) often exhibit aberrant activation of PI3K/Akt/mTOR signaling and targeted therapies using mTOR inhibitors showed limited success. The epigenetic modifier, lysine-specific histone demethylase-1A (KDM1A/LSD1) is overexpressed in EC, however, the mechanistic and therapeutic implications of KDM1A in EC are poorly understood. Here, using 119 FDA-approved drugs screen, we identified that KDM1A inhibition is highly synergistic with mTOR inhibitors. Combination therapy of KDM1A and mTOR inhibitors potently reduced the cell viability, survival, and migration of EC cells. Mechanistic studies demonstrated that KDM1A inhibition attenuated the activation of mTOR signaling cascade and abolished rapamycin induced feedback activation of Akt. RNA-seq analysis identified that KDM1A inhibition downregulated the expression of genes involved in rapamycin induced activation of Akt, including the mTORC2 complex. Chromatin immunoprecipitation experiments confirmed KDM1A recruitment to the promoter regions of mTORC2 complex genes and that KDM1A inhibition promoted enrichment of repressive H3K9me2 marks at their promoters. Combination therapy of KDM1A inhibitor and rapamycin reduced the tumor growth in EC xenograft and patient derived xenograft models in vivo and patient derived tumor explants ex vivo. Importantly, in silico analysis of TCGA EC patients data sets revealed that KDM1A expression positively correlated with the levels of PI3K/Akt/mTOR genes. Collectively, our results provide compelling evidence that KDM1A inhibition potentiates the activity of mTOR inhibitors by attenuating the feedback activation of Akt survival signaling. Furthermore, the use of concurrent KDM1A and mTOR inhibitors may be an attractive targeted therapy for EC patients.


Subject(s)
Endometrial Neoplasms/drug therapy , Histone Demethylases/genetics , MTOR Inhibitors/pharmacology , TOR Serine-Threonine Kinases/genetics , Animals , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/antagonists & inhibitors , Humans , MTOR Inhibitors/chemistry , Male , Mice , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
20.
J Invest Dermatol ; 142(2): 382-389, 2022 02.
Article in English | MEDLINE | ID: mdl-34536484

ABSTRACT

Expression-based systematic drug repositioning has been explored to predict novel treatments for a number of skin disorders. In this study, we utilize this approach to identify, to our knowledge, previously unreported therapies for epidermolysis bullosa simplex (EBS). RNA sequencing analysis was performed on skin biopsies of acute blisters (<1 week old) (n = 9) and nonblistered epidermis (n = 11) obtained from 11 patients with EBS. Transcriptomic analysis of blistered epidermis in patients with EBS revealed a set of 1,276 genes dysregulated in EBS blisters. The IL-6, IL-8, and IL-10 pathways were upregulated in the epidermis from EBS. Consistent with this, predicted upstream regulators included TNF-α, IL-1ß, IL-2, IL-6, phosphatidylinositol 3-kinase, and mTOR. The 1,276 gene EBS blister signature was integrated with molecular signatures from cell lines treated with 2,423 drugs using the Connectivity Map CLUE platform. The mTOR inhibitors and phosphatidylinositol 3-kinase inhibitors most opposed the EBS signature. To determine whether mTOR inhibitors could be used clinically in EBS, we conducted an independent pilot study of two patients with EBS treated with topical sirolimus for painful plantar keratoderma due to chronic blistering. Both individuals experienced marked clinical improvement and a notable reduction of keratoderma. In summary, a computational drug repositioning analysis successfully identified, to our knowledge, previously unreported targets in the treatment of EBS.


Subject(s)
Drug Repositioning , Epidermolysis Bullosa Simplex/drug therapy , MTOR Inhibitors/therapeutic use , Sirolimus/therapeutic use , Administration, Cutaneous , Adolescent , Adult , Biopsy , Child , Child, Preschool , Computational Biology , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/pathology , Female , Gene Expression Regulation/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , MTOR Inhibitors/pharmacology , Male , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Pilot Projects , RNA-Seq , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...