Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.069
Filter
1.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786052

ABSTRACT

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Subject(s)
Huntingtin Protein , Macaca mulatta , Animals , Macaca mulatta/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Blastocyst/metabolism , Trinucleotide Repeat Expansion/genetics , Embryo, Mammalian/metabolism , CRISPR-Cas Systems/genetics , Female , Disease Models, Animal
2.
Cell Genom ; 4(4): 100540, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604125

ABSTRACT

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Animals , Humans , Macaca mulatta/genetics , Regulatory Sequences, Nucleic Acid , Genomics
3.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604126

ABSTRACT

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Humans , Macaca mulatta/genetics , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation/genetics , Transcription Factors/genetics , Chromatin/genetics
4.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
5.
Zool Res ; 45(2): 299-310, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485500

ABSTRACT

Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques ( Macaca mulatta, MMU) and crab-eating macaques ( M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from 84 samples (41 MFA samples and 43 MMU samples) encompassing 14 common tissues. Our findings revealed a small fraction of genes (3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover, 19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary, this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.


Subject(s)
Genomics , Transcriptome , Humans , Animals , Macaca mulatta/genetics , Macaca fascicularis/genetics , Gene Expression Profiling/veterinary
6.
Cell Stem Cell ; 31(4): 455-466.e4, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38508195

ABSTRACT

For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.


Subject(s)
Hematopoietic Stem Cell Transplantation , Animals , Macaca mulatta/genetics , Hematopoietic Stem Cell Transplantation/methods , Lentivirus/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Hematopoietic Stem Cells , Gene Editing/methods , CRISPR-Cas Systems/genetics
7.
Mol Ther ; 32(4): 952-968, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38327046

ABSTRACT

We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.


Subject(s)
Dependovirus , Thrombocytopenia , Animals , Dependovirus/genetics , Macaca mulatta/genetics , Prospective Studies , Retrospective Studies , Liver/metabolism , Transgenes , Thrombocytopenia/metabolism , Endothelial Cells , Genetic Vectors/genetics
8.
Ann Med ; 56(1): 2315224, 2024 12.
Article in English | MEDLINE | ID: mdl-38353210

ABSTRACT

BACKGROUND: Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4ß7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4ß7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS: To determine whether the microbiome contributes to gut homeostasis after anti-α4ß7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS: Our results suggest that anti-α4ß7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS: Taken together, these data demonstrate the therapeutic advantages of anti-α4ß7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4ß7 antibody may depend on microbiome composition and SCFA generation.


Subject(s)
HIV Infections , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/genetics , Macaca mulatta/genetics , Macaca mulatta/metabolism , RNA, Ribosomal, 16S/genetics , Integrins/metabolism , Integrins/therapeutic use , Retinoids/therapeutic use
9.
Sci Rep ; 14(1): 4518, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402257

ABSTRACT

Exposure to ionizing radiation (IR) presents a formidable clinical challenge. Total-body or significant partial-body exposure at a high dose and dose rate leads to acute radiation syndrome (ARS), the complex pathologic effects that arise following IR exposure over a short period of time. Early and accurate diagnosis of ARS is critical for assessing the exposure dose and determining the proper treatment. Serum microRNAs (miRNAs) may effectively predict the impact of irradiation and assess cell viability/senescence changes and inflammation. We used a nonhuman primate (NHP) model-rhesus macaques (Macaca mulatta)-to identify the serum miRNA landscape 96 h prior to and following 7.2 Gy total-body irradiation (TBI) at four timepoints: 24, 36, 48, and 96 h. To assess whether the miRNA profile reflects the therapeutic effect of a small molecule ON01210, commonly known as Ex-Rad, that has demonstrated radioprotective efficacy in a rodent model, we administered Ex-Rad at two different schedules of NHPs; either 36 and 48 h post-irradiation or 48 and 60 h post-irradiation. Results of this study corroborated our previous findings obtained using a qPCR array for several miRNAs and their modulation in response to irradiation: some miRNAs demonstrated a temporary increased serum concentration within the first 24-36 h (miR-375, miR-185-5p), whereas others displayed either a prolonged decline (miR-423-5p) or a long-term increase (miR-30a-5p, miR-27b-3p). In agreement with these time-dependent changes, hierarchical clustering of differentially expressed miRNAs showed that the profiles of the top six miRNA that most strongly correlated with radiation exposure were inconsistent between the 24 and 96 h timepoints following exposure, suggesting that different biodosimetry miRNA markers might be required depending on the time that has elapsed. Finally, Ex-Rad treatment restored the level of several miRNAs whose expression was significantly changed after radiation exposure, including miR-16-2, an miRNA previously associated with radiation survival. Taken together, our findings support the use of miRNA expression as an indicator of radiation exposure and the use of Ex-Rad as a potential radioprotectant.


Subject(s)
Acute Radiation Syndrome , Medical Countermeasures , MicroRNAs , Radiation Exposure , Sulfonamides , Animals , Macaca mulatta/genetics , MicroRNAs/genetics , Radiation Exposure/analysis , Radiation, Ionizing
11.
Genome Biol Evol ; 16(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38051960

ABSTRACT

Meiotic recombination landscapes differ greatly between distantly and closely related taxa, populations, individuals, sexes, and even within genomes; however, the factors driving this variation are yet to be well elucidated. Here, we directly estimate contemporary crossover rates and, for the first time, noncrossover rates in rhesus macaques (Macaca mulatta) from four three-generation pedigrees comprising 32 individuals. We further compare these results with historical, demography-aware, linkage disequilibrium-based recombination rate estimates. From paternal meioses in the pedigrees, 165 crossover events with a median resolution of 22.3 kb were observed, corresponding to a male autosomal map length of 2,357 cM-approximately 15% longer than an existing linkage map based on human microsatellite loci. In addition, 85 noncrossover events with a mean tract length of 155 bp were identified-similar to the tract lengths observed in the only other two primates in which noncrossovers have been studied to date, humans and baboons. Consistent with observations in other placental mammals with PRDM9-directed recombination, crossover (and to a lesser extent noncrossover) events in rhesus macaques clustered in intergenic regions and toward the chromosomal ends in males-a pattern in broad agreement with the historical, sex-averaged recombination rate estimates-and evidence of GC-biased gene conversion was observed at noncrossover sites.


Subject(s)
Genome , Placenta , Pregnancy , Animals , Male , Humans , Female , Macaca mulatta/genetics , Chromosome Mapping/methods , Linkage Disequilibrium , Meiosis , Mammals/genetics , Histone-Lysine N-Methyltransferase/genetics
12.
Am J Biol Anthropol ; 183(1): 172-177, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37787449

ABSTRACT

OBJECTIVES: This brief communication documents the prevalence of maxillary central incisor talon cusps in Cayo Santiago rhesus monkeys (Macaca mulatta) and assesses whether talon cusp presence occurs at equivalent frequencies across matrilines. MATERIALS AND METHODS: The data on cusp presence vs. absence were analyzed by logistic regression in 170 monkeys (82 females, 78 males) from seven different matrilines. Sample sizes per matriline ranged from 10 to 42. Observations of talon cusps were blind with respect to matriline and sex. RESULTS: Talon cusps were present in 9.4% of the sample. By matriline, cusp frequencies ranged from 0%-Matrilines 073 and 106%-to 19.1% in Matriline 076. The frequency of the talon cusp in Matriline 076 was significantly greater than the frequency of the cusp in the remainder of the sample. There was no statistically significant difference in the frequency of the talon cusp by sex. CONCLUSIONS: This study suggests that the talon cusp in rhesus monkeys, as in humans and baboons, is a rare trait. Elevated prevalence of the talon cusp in Matriline 076 suggests the possibility of a genetic influence on talon cusp expression.


Subject(s)
Tooth, Supernumerary , Male , Female , Animals , Humans , Macaca mulatta/genetics , Incisor , Prevalence , Papio
13.
Differentiation ; 135: 100743, 2024.
Article in English | MEDLINE | ID: mdl-38147763

ABSTRACT

The fovea centralis (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme CYP26A1 has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of FGF8 to then direct the development of a rod-free area. Similarly, high levels of CYP26A1, CDKN1A, and NPVF expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, CYP26A1 is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.


Subject(s)
Chickens , Retina , Animals , Macaca mulatta/genetics , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Retinal Cone Photoreceptor Cells , Tretinoin
14.
Drug Metab Dispos ; 52(3): 266-273, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38123944

ABSTRACT

Cynomolgus and rhesus macaques are used in drug metabolism studies due to their evolutionary and phylogenetic closeness to humans. Cytochromes P450 (P450s or CYPs), including the CYP2C family enzyme, are important endogenous and exogenous substrate-metabolizing enzymes and play major roles in drug metabolism. In cynomolgus and rhesus macaques, six CYP2Cs have been identified and characterized, namely, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2C76, and CYP2C93. In this study, CYP2C119, a new CYP2C, was identified and characterized in cynomolgus and rhesus macaques. Cynomolgus and rhesus CYP2C119 contained open reading frames of 489 amino acids with high sequence identities to human CYP2C8 and to cynomolgus and rhesus CYP2C8. Phylogenetic analysis showed that cynomolgus and rhesus CYP2C119 were closely related to cynomolgus and rhesus CYP2C8. In cynomolgus and rhesus genomes, CYP2C genes, including CYP2C119, form a cluster. Among the tissues analyzed, cynomolgus CYP2C119 mRNA was predominantly expressed in liver. Hepatic expressions of CYP2C119 mRNA in four cynomolgus and two rhesus macaques varied, with no expression in one rhesus macaque. Among the CYP2C mRNAs, CYP2C119 mRNA was expressed less abundantly than CYP2C8, CYP2C9, CYP2C19, and CYP2C76 mRNAs but more abundantly than CYP2C18 mRNA. Recombinant cynomolgus and rhesus CYP2C119 catalyzed progesterone 16α-, 17α-, and 21-hydroxylation and diclofenac and omeprazole oxidations, indicating that CYP2C119 is a functional enzyme. Therefore, the novel CYP2C119 gene, expressed in macaque liver, encodes a functional enzyme that metabolizes human CYP2C substrates and is likely responsible for drug clearances. SIGNIFICANCE STATEMENT: Cytochrome P450 2C119 was found in cynomolgus and rhesus macaques, in addition to the known P450 2C8, 2C9, 2C18, 2C19, 2C76, and 2C93. Cynomolgus and rhesus CYP2C119 contain open reading frames of 489 amino acids with high sequence identity to human CYP2C8. Cynomolgus CYP2C119 mRNA is predominantly expressed in the liver. Recombinant CYP2C119 catalyzed progesterone hydroxylation and diclofenac and omeprazole oxidations. Therefore, the novel CYP2C119 gene expressed in the macaque liver encodes a functional enzyme that metabolizes human CYP2C substrates.


Subject(s)
Diclofenac , Omeprazole , Animals , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2C19/genetics , Progesterone , Phylogeny , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acids/genetics
15.
Sci Rep ; 13(1): 20016, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974016

ABSTRACT

The Sperm Chromatin Structure Assay (SCSA) is a robust test with high repeatability and precision. It is a clinically accepted assay that defines risk for infertility in men by measuring the degree of DNA fragmentation (% DFI) in sperm. The objective of this study was to adapt and validate the SCSA for rhesus macaques (Macaca mulatta) and establish a range for % DFI in fertile males. Sperm samples from two different males were used to produce a % DFI validation curve before establishing a range using additional samples from n = 11 males. Sperm labeled with acridine orange were analyzed by flow cytometry to measure green fluorescence (native or intact DNA) and red fluorescence (fragmented DNA). Data were exported to FlowJo software to determine the % DFI for each sample. DNA fragmentation ranged from 0.1 to 2.4% DFI, with a mean ± SD = 1.1 ± 0.7% DFI (validation curve optimized to R2 > 0.95). In conclusion, we were able to successfully validate the SCSA in our institution and establish the first normal range for sperm DNA fragmentation in rhesus macaques. Our study provides a quantitative baseline for future evaluations to assess macaque fertility through the SCSA test.


Subject(s)
Infertility, Male , Semen , Animals , Humans , Male , Macaca mulatta/genetics , DNA Fragmentation , Reference Values , Chromatin , Spermatozoa , Infertility, Male/genetics , Infertility, Male/veterinary , DNA
16.
Genes (Basel) ; 14(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38002927

ABSTRACT

Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.


Subject(s)
MicroRNAs , Humans , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , DNA Transposable Elements/genetics , Macaca mulatta/genetics , Macaca mulatta/metabolism , Mutation
17.
Microbiol Spectr ; 11(6): e0335023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37921496

ABSTRACT

IMPORTANCE: Efficient strategies for HIV-1 cART-free virologic control are critical for ending the AIDS pandemic. The essential role of effector-memory CD8+ T cells in controlling viremia and eliminating virus-infected cells has made them a promising target for vaccine development. It has been previously reported that PD-1-based DNA vaccination was effective in inducing polyfunctional effector-memory CD8+ T cells for AIDS virus control for 2 years in rhesus monkeys. This follow-up study extends the findings and shows that a viremia-free period of over 6 years was detected in two monkeys immunized with PD-1-based DNA vaccine against pathogenic SHIVSF162P3CN infection in the absence of antiretroviral therapy. Long-term vaccine-induced memory T cell responses were detected. Our results warrant the clinical trials of PD-1-based DNA vaccines for achieving HIV-1 cART-free virologic control used either alone or in combination with other biomedical interventions.


Subject(s)
AIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Vaccines, DNA , Animals , Macaca mulatta/genetics , Simian Acquired Immunodeficiency Syndrome/prevention & control , CD8-Positive T-Lymphocytes , Simian Immunodeficiency Virus/genetics , Follow-Up Studies , Programmed Cell Death 1 Receptor , Vaccination , DNA , AIDS Vaccines/genetics
18.
BMC Res Notes ; 16(1): 292, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37885027

ABSTRACT

OBJECTIVES: The interferon-triggered innate immune response has been observed to be under strong diversifying selection to counteract the many pathogens hosts have to defend against. In particular, rewiring of gene transcription regulation allows organisms to rapidly acquire new phenotypes by removing and adding genes into the innate immune gene network. Dissecting the molecular processes by which this rewiring takes place, either by changing the DNA regulatory elements or by changing the activity of the regulators across species, is key to better understand this evolutionary process. DATA DESCRIPTION: To better comprehend the evolutionary dynamics that have occurred in the initial transcriptional response to interferon in primates, we present Precision Run-On (PRO-seq) datasets made after 1 h of interferon-α2 stimulation on human and rhesus macaque lymphoblastoid cell lines. Further, we tested the difference between using either species' cognate interferon versus using the other orthologous interferon to account for any potential impacts in the interaction of the orthologous interferons with their cellular membrane receptors. This data provides insights into the regulatory mechanisms that drive species-specific responses to environmental perturbations, such as the one driven by the interactions of pathogens and their hosts.


Subject(s)
Immunity, Innate , Interferons , Animals , Humans , Interferons/pharmacology , Macaca mulatta/genetics , Cell Line
19.
Sci Adv ; 9(41): eadh1914, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824616

ABSTRACT

Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.


Subject(s)
Brain , Multiomics , Animals , Macaca mulatta/genetics , Transcriptome
20.
Science ; 382(6667): eade9516, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824638

ABSTRACT

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Subject(s)
Cognition , Hominidae , Neocortex , Temporal Lobe , Animals , Humans , Gene Expression Profiling , Gorilla gorilla/genetics , Hominidae/genetics , Hominidae/physiology , Macaca mulatta/genetics , Pan troglodytes/genetics , Phylogeny , Transcriptome , Neocortex/physiology , Species Specificity , Temporal Lobe/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...