ABSTRACT
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) was first identified in 1882 by Robert Koch, and it is estimated that this pathogen has been around for as long as 3 million years.The World Health Organization (WHO) reported that in 2022 alone an estimated 10.6 million people developed TB worldwide, making TB the world's second leading cause of death from a single infectious agent, just after coronavirus disease (COVID-19), despite TB being a preventable and usually curable disease.Moreover, epidemiological studies suggest that approximately a quarter of the global population has been infected with TB bacteria, of which 5-10% will eventually develop symptoms and TB disease. Poverty, obesity, diabetes, and alcohol use contribute to the burden of TB.Alveolar macrophages play a pivotal role in the clearance of airborne pathogenic microorganisms and are the primary target of M. tuberculosis.Macrophage activity depend on metabolism and circadian rhythmicity, and mitochondria are a central hub that coordinates the communication between metabolism, circadian rhythmicity, and the immune system.Recent evidence has thrown light on how M. tuberculosis metabolism may regulate macrophage activity and the overall host responses to M. tuberculosis infection.This chapter explores how all these biological domains relate to each other, highlighting the multidimensional nature of TB, and positioning macrophages at center stage.
Subject(s)
Circadian Rhythm , Macrophages , Mitochondria , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/immunology , Circadian Rhythm/physiology , Mitochondria/metabolism , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , AnimalsABSTRACT
BACKGROUND: Auranofin is an approved anti-rheumatic drug that has a broad-range inhibitory action against several microorganisms, including human pathogenic fungi. The auranofin activity against Histoplasma capsulatum, the dimorphic fungus that causes histoplasmosis, has not been properly addressed. Since there are few therapeutic options for this life-threatening systemic mycosis, this study evaluated the effects of auranofin on H. capsulatum growth and expression of virulence factors. METHODOLOGY/PRINCIPAL FINDINGS: Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) of auranofin against 15 H. capsulatum strains with distinct genetic backgrounds were determined using the yeast form of the fungus and a microdilution protocol. Auranofin activity was also assessed on a macrophage model of infection and on a Tenebrio molitor invertebrate animal model. Expression of virulence-related genes was compared between auranofin treated and untreated H. capsulatum yeast cells using a quantitative PCR assay. Auranofin affected the growth of different strains of H. capsulatum, with MIC and MFC values ranging from 1.25 to 5.0 µM and from 2.5 to >10 µM, respectively. Auranofin was able to kill intracellular H. capsulatum yeast cells and conferred protection against the fungus in the experimental animal model of infection. Moreover, the expression of catalase A, HSP70, superoxide dismutase, thioredoxin reductase, serine proteinase, cytochrome C peroxidase, histone 2B, formamidase, metallopeptidase, Y20 and YPS3 proteins were reduced after six hours of auranofin treatment. CONCLUSIONS/SIGNIFICANCE: Auranofin is fungicidal against H. capsulatum and reduces the expression of several virulence-related genes, which makes this anti-rheumatic drug a good candidate for new medicines against histoplasmosis.
Subject(s)
Antifungal Agents , Auranofin , Histoplasma , Microbial Sensitivity Tests , Histoplasma/drug effects , Histoplasma/genetics , Histoplasma/pathogenicity , Auranofin/pharmacology , Animals , Antifungal Agents/pharmacology , Virulence Factors/genetics , Histoplasmosis/microbiology , Histoplasmosis/drug therapy , Macrophages/microbiology , Macrophages/drug effects , Mice , Tenebrio/microbiology , Virulence/drug effects , Disease Models, Animal , HumansABSTRACT
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.
Subject(s)
Aspergillosis , Aspergillus fumigatus , Fungal Proteins , Immune Evasion , Proteome , Spores, Fungal , Aspergillus fumigatus/immunology , Aspergillus fumigatus/genetics , Animals , Spores, Fungal/immunology , Mice , Proteome/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/immunology , Aspergillosis/immunology , Aspergillosis/microbiology , Humans , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Cytokines/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/immunology , Disease Models, Animal , Epithelial Cells/microbiology , Epithelial Cells/immunology , Epithelial Cells/metabolism , FemaleABSTRACT
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE: Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
Subject(s)
Antifungal Agents , Cat Diseases , Sporothrix , Sporotrichosis , Animals , Sporotrichosis/drug therapy , Sporotrichosis/microbiology , Sporotrichosis/veterinary , Cats , Sporothrix/drug effects , Antifungal Agents/pharmacology , Cat Diseases/drug therapy , Cat Diseases/microbiology , Humans , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Brazil , Microbial Sensitivity Tests , Dogs , Macrophages/drug effects , Macrophages/microbiology , MiceABSTRACT
In mammals, enteric salmonellas can use tetrathionate (ttr), formed as a by-product from the inflammatory process in the intestine, as electron acceptor in anaerobic respiration, and it can fuel its energy metabolism by degrading the microbial fermentation product 1,2-propanediol. However, recent studies have shown that this mechanism is not important for Salmonella infection in the intestine of poultry, while it prolongs the persistence of Salmonella at systemic sites in this species. In the current study, we show that ΔttrApduA strains of Salmonella enterica have lower net survival within chicken-derived HD-11 macrophages, as CFU was only 2.3% (S. Enteritidis ΔttrApduA), 2.3% (S. Heidelberg ΔttrApduA), and 3.0% (S. Typhimurium ΔttrApduA) compared to wild-type strains after 24 h inside HD-11 macrophage cells. The difference was not related to increased lysis of macrophages, and deletion of ttrA and pduA did not impair the ability of the strains to grow anaerobically. Further studies are indicated to determine the reason why Salmonella ΔttrApduA strains survive less well inside macrophage cell lines.
Subject(s)
Chickens , Macrophages , Salmonella enterica , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Animals , Chickens/microbiology , Salmonella enterica/genetics , Cell Line , Gene Deletion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/immunology , Microbial Viability/geneticsABSTRACT
Research suggests that both tuberculosis (TB) and type 2 diabetes mellitus (T2DM) have an immuno-endocrine imbalance characterized by dysregulated proinflammatory molecules and hormone levels (high cortisol/DHEA ratio), impeding an effective immune response against Mycobacterium tuberculosis (Mtb) driven by cytokines, antimicrobial peptides (AMPs), and androgens like DHEA. Insulin, sulfonylurea derivatives, and metformin are commonly used glucose-lowering drugs in patients suffering from TB and T2DM. For this comorbidity, metformin is an attractive target to restore the immunoendocrine mechanisms dysregulated against Mtb. This study aimed to assess whether metformin influences cortisol and DHEA synthesis in adrenal cells and if these hormones influence the expression of proinflammatory cytokines and AMPs in Mtb-infected macrophages. Our results suggest that metformin may enhance DHEA synthesis while maintaining cortisol homeostasis. In addition, supernatants from metformin-treated adrenal cells decreased mycobacterial loads in macrophages, which related to rising proinflammatory cytokines and AMP expression (HBD-2 and 3). Intriguingly, we find that HBD-3 and LL-37 can modulate steroid synthesis in adrenal cells with diminished levels of cortisol and DHEA, highlighting the importance of crosstalk communication between adrenal hormones and these effectors of innate immunity. We suggest that metformin's effects can promote innate immunity against Mtb straight or through modulation of corticosteroid hormones.
Subject(s)
Cytokines , Dehydroepiandrosterone , Hydrocortisone , Macrophages , Metformin , Mycobacterium tuberculosis , Metformin/pharmacology , Humans , Macrophages/metabolism , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Mycobacterium tuberculosis/drug effects , Hydrocortisone/metabolism , Dehydroepiandrosterone/pharmacology , Cytokines/metabolism , Immunity, Innate/drug effects , THP-1 Cells , Host-Pathogen Interactions , Cells, Cultured , Hypoglycemic Agents/pharmacology , Adrenal Glands/metabolism , Adrenal Glands/drug effects , Adrenal Glands/microbiology , Inflammation Mediators/metabolismABSTRACT
Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.
Subject(s)
Cryptococcus gattii , Nicotiana , Cryptococcus gattii/drug effects , Cryptococcus gattii/growth & development , Cryptococcus gattii/metabolism , Cryptococcus gattii/physiology , Animals , Mice , Nicotiana/microbiology , Macrophages/microbiology , Cryptococcosis/microbiology , Tenebrio/microbiology , Agrochemicals/pharmacology , Antifungal Agents/pharmacology , Plant Diseases/microbiologyABSTRACT
Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.
Subject(s)
Brucella abortus , Endothelial Cells , Epithelial Cells , Histocompatibility Antigens Class I , Interferon-gamma , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , RNA, Bacterial/genetics , Cell Line , Down-Regulation/drug effects , ErbB Receptors/metabolism , Brucellosis/immunology , Brucellosis/metabolism , Brucellosis/microbiology , Brucellosis/genetics , Golgi Apparatus/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effectsABSTRACT
Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.
Subject(s)
Antifungal Agents , Cryptococcosis , Cryptococcus neoformans , Saccharomyces cerevisiae , Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Animals , Mice , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Disease Models, Animal , Macrophages/microbiology , Macrophages/drug effects , Macrophages/immunology , Microbial Sensitivity Tests , Caspofungin/pharmacology , Female , Cell Membrane/drug effects , Cell Membrane/metabolism , Amphotericin B/pharmacologyABSTRACT
Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.
Subject(s)
Immunity, Innate , Legionella pneumophila , Legionnaires' Disease , Legionella pneumophila/immunology , Legionella pneumophila/pathogenicity , Humans , Animals , Legionnaires' Disease/immunology , Legionnaires' Disease/microbiology , Phagocytes/immunology , Phagocytes/microbiology , Type IV Secretion Systems/immunology , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Inflammasomes/immunology , Inflammasomes/metabolism , Monocytes/immunology , Monocytes/microbiology , Virulence Factors/immunology , Virulence Factors/metabolism , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions/immunologyABSTRACT
The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.
Subject(s)
Bacterial Proteins , Virulence Factors , Wiskott-Aldrich Syndrome Protein, Neuronal , Virulence Factors/metabolism , Virulence Factors/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/genetics , Animals , Mice , Protein Binding , Brucella/metabolism , Brucella/genetics , Brucella/pathogenicity , Amino Acid Motifs , Actins/metabolism , Brucellosis/microbiology , Macrophages/microbiology , Host-Pathogen InteractionsABSTRACT
Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1ß, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1ß, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.
Subject(s)
Cytokines , Drug Repositioning , Histone Deacetylase Inhibitors , Immunity, Innate , Mycobacterium Infections, Nontuberculous , Immunity, Innate/drug effects , Humans , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Histone Deacetylase Inhibitors/pharmacology , Cytokines/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/immunology , Mycobacterium/immunology , Mycobacterium/drug effectsABSTRACT
A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.
Subject(s)
Dendritic Cells , Macrophages , Mycobacterium tuberculosis , Quantitative Trait Loci , Tuberculosis , Humans , Peru , Tuberculosis/genetics , Tuberculosis/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/genetics , Female , Dendritic Cells/metabolism , Male , Adult , Genetic Predisposition to Disease , Genetic Variation , Gene Expression Regulation , Middle Aged , Polymorphism, Single Nucleotide , Gene Expression ProfilingABSTRACT
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Subject(s)
Brucella abortus , Gene Expression Regulation, Bacterial , Brucella abortus/genetics , Brucella abortus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Transcription, Genetic , RNA, Antisense/genetics , RNA, Antisense/metabolism , Stress, Physiological , Animals , Macrophages/microbiologyABSTRACT
The interaction between macrophages and Cryptococcus neoformans is crucial in the pathogenesis of cryptococcosis. These phagocytes are important immune effectors, but also a niche in which facultative intracellular parasites, such as C. neoformans, thrive. Consequently, phagocytosis of cryptococcal cells and its outcomes are very frequently studied. One major issue with several of the tests used for this, however, is that macrophage-C. neoformans interaction does not always result in phagocytosis, as fungi may be attached to the external surface of the phagocyte. The most used methodologies to study phagocytosis of cryptococcal cells have varying degrees of precision in separating fungi that are truly internalized from those that are outside macrophages. Here we describe two assays to measure phagocytosis that can differentiate internal from external C. neoformans cells.
Subject(s)
Cryptococcosis , Cryptococcus neoformans , Macrophages , Phagocytosis , Cryptococcus neoformans/immunology , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Cryptococcosis/microbiology , Cryptococcosis/immunology , Animals , Mice , Humans , Host-Pathogen Interactions/immunologyABSTRACT
Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.
Subject(s)
Cystatin C , Macrophages , Nitric Oxide , Porphyromonas gingivalis , Reactive Oxygen Species , Porphyromonas gingivalis/immunology , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cystatin C/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Cytokines/metabolism , Periodontitis/microbiology , Periodontitis/immunology , Periodontitis/drug therapy , Periodontitis/pathology , Apoptosis/drug effectsABSTRACT
Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.
Subject(s)
Bacterial Proteins , Bordetella pertussis , Histidine Kinase , Bordetella pertussis/pathogenicity , Bordetella pertussis/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Gene Expression Regulation, Bacterial , Macrophages/microbiology , Humans , Proteome , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Microbial ViabilityABSTRACT
Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.
Subject(s)
Antimicrobial Cationic Peptides , Blood Proteins , Macrophages , Mycobacterium tuberculosis , Tumor Necrosis Factor-alpha , Humans , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/drug effects , Blood Proteins/metabolism , Blood Proteins/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Antimicrobial Cationic Peptides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/drug therapyABSTRACT
Mastitis is one the most widespread and serious diseases in dairy cattle. Recurrent and chronic infections are often attributable to certain pathogenicity mechanisms in mastitis-causing pathogens such as Staphylococcus spp. These include growing in biofilm and invading cells, both of which make it possible to resist or evade antimicrobial therapies and the host's immune system. This study tested the effects of active vitamin D3 (i.e., calcitriol or 1,25-dihydroxyvitamin D3) on the internalization and phagocytosis of biofilm-forming Staphylococcus spp. isolated from animals with mastitis. Two established bovine cell lines were used: MAC-T (mammary epithelial cells) and BoMac (macrophages). Calcitriol (0-200â¯nM) did not affect the viability of MAC-T cells nor that of BoMac cells after 24 and 72â¯h. Concentrations of 0-100â¯mM for 24â¯h upregulated the expression of 24-hydroxylase in MAC-T cells, but did not alter that of VDR. Pre-treatment of the cells with calcitriol for 24â¯h decreased the internalization of S. aureus V329 into MAC-T cells (0-100â¯nM), and stimulated the phagocytosis of the same strain and of S. xylosus 4913 (0-10â¯nM). Calcitriol and two conditioned media, obtained by treating the cells with 25-200â¯nM of the metabolite for 24â¯h, were also assessed in terms of their antimicrobial and antibiofilm activity. Neither calcitriol by itself nor the conditioned media affected staphylococcal growth or biofilm formation (0-200â¯nM for 12 and 24â¯h, respectively). In contrast, the conditioned media (0-100â¯nM for 24â¯h) decreased the biomass of preformed non-aureus staphylococcal biofilms and killed the bacteria within them, without affecting metabolic activity. These effects may be mediated by reactive oxygen species and proteins with antimicrobial and/or antibiofilm activity. In short, calcitriol could make pathogens more accessible to antimicrobial therapies and enhance bacterial clearance by professional phagocytes. Moreover, it may modulate the host's endogenous defenses in the bovine udder and help combat preformed non-aureus staphylococcal biofilms (S. chromogenes 40, S. xylosus 4913, and/or S. haemolyticus 6). The findings confirm calcitriol's potential as an adjuvant to prevent and/or treat intramammary infections caused by Staphylococcus spp., which would in turn contribute to reducing antibiotic use on dairy farms.
Subject(s)
Biofilms , Immunity, Innate , Mastitis, Bovine , Phagocytosis , Staphylococcus , Animals , Cattle , Biofilms/drug effects , Biofilms/growth & development , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/immunology , Immunity, Innate/drug effects , Staphylococcus/drug effects , Phagocytosis/drug effects , Calcitriol/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/immunology , Staphylococcal Infections/drug therapy , Cell Line , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/immunology , Macrophages/microbiology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolismABSTRACT
Paracoccidioides spp. is the etiologic agent of Paracoccidioidomycosis (PCM), a systemic disease with wide distribution in Latin America. Macrophages are very important cells during the response to infection by P. brasiliensis. In this study, we performed a proteomic analysis to evaluate the consequences of P. brasiliensis yeast cells on the human THP-1 macrophage proteome. We have identified 443 and 2247 upregulated or downregulated proteins, respectively, in macrophages co-cultured with yeast cells of P. brasiliensis in comparison to control macrophages unexposed to the fungus. Proteomic analysis revealed that interaction with P. brasiliensis caused metabolic changes in macrophages that drastically affected energy production pathways. In addition, these macrophages presented regulated many factors related to epigenetic modifications and gene transcription as well as a decrease of many proteins associated to the immune system activity. This is the first human macrophage proteome derived from interactions with P. brasiliensis, which contributes to elucidating the changes that occur during the host response to this fungus. Furthermore, it highlights proteins that may be targets for the development of new therapeutic approaches to PCM.