Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.053
Filter
1.
Arch Oral Biol ; 165: 106018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870611

ABSTRACT

OBJECTIVE: Tooth growth and wear are commonly used tools for determining the age of mammals. The most speciose order of marsupials, Diprotodontia, is characterised by a pair of procumbent incisors within the lower jaw. This study examines the growth and wear of these incisors to understand their relationship with age and sex. DESIGN: Measurements of mandibular incisor crown and root length were made for two sister species of macropodid (kangaroos and wallabies); Macropus giganteus and Macropus fuliginosus. Histological analysis examined patterns of dentine and cementum deposition within these teeth. Broader generalisability within Diprotodontia was tested using dentally reduced Tarsipes rostratus - a species disparate in body size and incisor function to the studied macropodids. RESULTS: In the macropodid sample it is demonstrated that the hypsodont nature of these incisors makes measurements of their growth (root length) and wear (crown length) accurate indicators of age and sex. Model fitting finds that root growth proceeds according to a logarithmic function across the lifespan, while crown wear follows a pattern of exponential reduction for both macropodid species. Histological results find that secondary dentine deposition and cementum layering are further indicators of age. Incisor measurements are shown to correlate with age in the sample of T. rostratus. CONCLUSIONS: The diprotodontian incisor is a useful tool for examining chronological age and sex, both morphologically and microstructurally. This finding has implications for population ecology, palaeontology and marsupial evolution.


Subject(s)
Incisor , Marsupialia , Animals , Incisor/anatomy & histology , Marsupialia/growth & development , Marsupialia/anatomy & histology , Female , Male , Tooth Root/growth & development , Tooth Root/anatomy & histology , Macropodidae/growth & development , Macropodidae/anatomy & histology , Macropodidae/physiology , Tooth Crown/growth & development , Tooth Crown/anatomy & histology , Dental Cementum/anatomy & histology , Age Determination by Teeth/methods , Tooth Wear/pathology , Dentin
2.
Heredity (Edinb) ; 133(1): 21-32, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834866

ABSTRACT

Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.


Subject(s)
Alleles , Genomic Imprinting , Insulin , Mammals , Tyrosine 3-Monooxygenase , Animals , Mammals/genetics , Tyrosine 3-Monooxygenase/genetics , Mice/genetics , Insulin/genetics , Insulin/metabolism , Macropodidae/genetics , Female , Male
3.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38833564

ABSTRACT

In brief: Atrazine, like oestrogen, disorganises laminin formation and reduces the number of germ cells and Sertoli cells in the developing testes of the tammar wallaby. This study suggests that interfering with the balance of androgen and oestrogen affects the integrity of laminin structure and testis differentiation. Abstract: The herbicide atrazine was banned in Europe in 2003 due to its endocrine disrupting activity but remains widely used. The integrity of the laminin structure in fetal testis cords requires oestrogen signalling but overexposure to xenoestrogens in the adult can cause testicular dysgenesis. However, whether xenoestrogens affect laminin formation in developing testes has not been investigated. Here we examined the effects of atrazine in the marsupial tammar wallaby during early development and compare it with the effects of the anti-androgen flutamide, oestrogen, and the oestrogen degrader fulvestrant. The tammar, like all marsupials, gives birth to altricial young, allowing direct treatment of the developing young during the male programming window (day 20-40 post partum (pp)). Male pouch young were treated orally with atrazine (5 mg/kg), flutamide (10 mg/kg), 17ß-oestradiol (2.5 mg/kg) and fulvestrant (1 mg/kg) daily from day 20 to 40 pp. Distribution of laminin, vimentin, SOX9 and DDX4, cell proliferation and mRNA expression of SRY, SOX9, AMH, and SF1 were examined in testes at day 50 post partum after the treatment. Direct exposure to atrazine, flutamide, 17ß-oestradiol, and fulvestrant all disorganised laminin but had no effect on vimentin distribution in testes. Atrazine reduced the number of germ cells and Sertoli cells when examined at day 40-50 pp and day 20 to 40 pp, respectively. Both flutamide and fulvestrant reduced the number of germ cells and Sertoli cells. Atrazine also downregulated SRY expression and impaired SOX9 nuclear translocation. Our results demonstrate that atrazine can compromise normal testicular differentiation during the critical male programming window.


Subject(s)
Atrazine , Cell Differentiation , Herbicides , Laminin , Testis , Male , Animals , Testis/drug effects , Testis/metabolism , Testis/cytology , Atrazine/pharmacology , Laminin/metabolism , Cell Differentiation/drug effects , Herbicides/pharmacology , Macropodidae/metabolism , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/cytology , Estrogens/pharmacology , Estrogens/metabolism , Endocrine Disruptors/pharmacology , Cell Count , Androgen Antagonists/pharmacology , Flutamide/pharmacology
4.
J Vet Diagn Invest ; 36(4): 515-521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721879

ABSTRACT

Macropodid alphaherpesvirus 2 (MaAHV2) is best described in macropods and has been implicated in outbreaks among captive marsupial populations in Australia. Natural disease caused by herpesviruses has not been reported previously in opossum species, to our knowledge. One Virginia opossum (Didelphis virginiana) and 1 water opossum (Chironectes minimus) were submitted for postmortem examination from a zoo that housed 6 opossums, all of which died within several weeks. Red kangaroos (Macropus rufus) and red-necked wallabies (Macropus rufogriseus) were also present at the facility. Liver samples from both opossums were submitted for transmission electron microscopy and whole-genome sequencing. Microscopically, both opossums had multifocal necrosis in the liver and lung, with intranuclear inclusion bodies within hepatocytes and pneumocytes. Another significant finding in the Virginia opossum was sepsis, with isolation of Streptococcus didelphis from various organs. Ultrastructural analysis of formalin-fixed liver tissue identified herpesviral replication complexes in both opossums; negative-stain electron microscopy of unfixed liver tissue repeatedly yielded a negative result. The herpesvirus had >99% nucleotide identity with MaAHV2. These 2 cases indicate that both opossum species are susceptible to MaAHV2 infection, and the outbreak has implications for mixed-species facilities that house macropods.


Subject(s)
Herpesviridae Infections , Animals , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/pathology , Death, Sudden/veterinary , Animals, Zoo , Didelphis/virology , Alphaherpesvirinae/isolation & purification , Female , Liver/pathology , Liver/virology , Male , Microscopy, Electron, Transmission/veterinary , Macropodidae/virology , Opossums/virology
5.
J Morphol ; 285(5): e21707, 2024 May.
Article in English | MEDLINE | ID: mdl-38721681

ABSTRACT

Using finite element analysis on the astragali of five macropodine kangaroos (extant and extinct hoppers) and three sthenurine kangaroos (extinct proposed bipedal striders) we investigate how the stresses experienced by the ankle in similarly sized kangaroos of different hypothesized/known locomotor strategy compare under different simulation scenarios, intended to represent the moment of midstance at different gaits. These tests showed a clear difference between the performance of sthenurines and macropodines with the former group experiencing lower stress in simulated bipedal strides in all species compared with hopping simulations, supporting the hypothesis that sthenurines may have utilized this gait. The Pleistocene macropodine Protemnodon also performed differently from all other species studied, showing high stresses in all simulations except for bounding. This may support the hypothesis of Protemnodon being a quadrupedal bounder.


Subject(s)
Finite Element Analysis , Macropodidae , Animals , Macropodidae/physiology , Macropodidae/anatomy & histology , Ankle/physiology , Biomechanical Phenomena , Gait/physiology , Locomotion/physiology , Stress, Mechanical
6.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729967

ABSTRACT

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Subject(s)
Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
7.
PLoS One ; 19(5): e0303877, 2024.
Article in English | MEDLINE | ID: mdl-38771828

ABSTRACT

Coxiella burnetii, the causative agent of Q fever, is a zoonotic bacteria of global public health significance. The organism has a complex, diverse, and relatively poorly understood animal reservoir but there is increasing evidence that macropods play some part in the epidemiology of Q fever in Australia. The aim of this cross-sectional survey was to estimate the animal- and tissue-level prevalence of coxiellosis amongst eastern grey (Macropus giganteus) and red (Osphranter rufus) kangaroos co-grazing with domestic cattle in a Q fever endemic area in Queensland. Serum, faeces and tissue samples from a range of organs were collected from 50 kangaroos. A total of 537 tissue samples were tested by real-time PCR, of which 99 specimens from 42 kangaroos (84% of animals, 95% confidence interval [CI], 71% to 93%) were positive for the C. burnetii IS1111 gene when tested in duplicate. Twenty of these specimens from 16 kangaroos (32%, 95% CI 20% to 47%) were also positive for the com1 or htpAB genes. Serum antibodies were present in 24 (57%, 95% CI 41% to 72%) of the PCR positive animals. There was no statistically significant difference in PCR positivity between organs and no single sample type consistently identified C. burnetii positive kangaroos. The results from this study identify a high apparent prevalence of C. burnetii amongst macropods in the study area, albeit seemingly with an inconsistent distribution within tissues and in relatively small quantities, often verging on the limits of detection. We recommend Q fever surveillance in macropods should involve a combination of serosurveys and molecular testing to increase chances of detection in a population, noting that a range of tissues would likely need to be sampled to confirm the diagnosis in a suspect positive animal.


Subject(s)
Antibodies, Bacterial , Coxiella burnetii , Macropodidae , Q Fever , Animals , Coxiella burnetii/genetics , Coxiella burnetii/immunology , Macropodidae/microbiology , Queensland/epidemiology , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Q Fever/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Livestock/microbiology , Cattle , Cross-Sectional Studies
8.
PeerJ ; 12: e17383, 2024.
Article in English | MEDLINE | ID: mdl-38770092

ABSTRACT

Background: We studied the occurrence of two sympatric wallabies, the red-necked pademelon (Thylogale thetis) and the red-legged pademelon (T. stigmatica) in northeastern New South Wales, Australia in relation to structural habitat attributes. At our study site, both species inhabit closed forest environments and have overlapping distributions, but T. thetis leaves the forest at night to graze adjacent grassy forest edges whereas T. stigmatica remains within the forest and browses forest vegetation. The objectives of the study were to investigate how structural attributes of two forest types, wet sclerophyll forest and rainforest, relate to the fine-scale occurrence of these two wallaby species within the forested environment. Methods: We gathered occurrence data from 48 camera trap stations divided equally between rainforest and wet sclerophyll forest. At each camera point, we also measured a range of structural habitat attributes to determine habitat affiliations for the two Thylogale species. Principal component analyses were used to describe major trends in habitat, and generalised linear models were used to describe the efficacy of the variables in predicting habitat occurrence of each species. Results: The number of occurrences of Thylogale thetis was significantly greater than occurrences of T. stigmatica, which was driven by significantly greater occurrences of T. thetis in wet sclerophyll forest. There was both spatial and temporal partitioning between the two species; there was a significant difference in the occurrences of the two species at individual cameras and T. stigmatica had a different activity schedule than T. thetis in wet sclerophyll forest, where the latter reached its greatest rate of occurrence. At a finer (camera station) scale, occurrences of T. thetis increased with proximity to roads and grassy edges and at sites that were less rocky and less steep. T. stigmatica occurrence increased in the presence of rainforest elements like vines, palms and ferns, more ground-level cover and tree-fall gaps and at sites with fewer emergent eucalypts. Conclusion: Our findings have implications for managing these pademelons and their habitats. T. thetis is a common species that was encountered more often than T. stigmatica, and it responded positively to human disturbance like roadsides and grassy edges, presumably because these areas provided good grazing opportunities. By comparison, T. stigmatica is a threatened species, and it responded to natural disturbance like tree-fall gaps where lateral cover was greater, and where rainforest food plants may be more abundant. Our results suggest, therefore, that conservation of the threatened T. stigmatica requires the preservation of intact rainforest.


Subject(s)
Ecosystem , Forests , Macropodidae , Macropodidae/physiology , Animals , New South Wales , Sympatry , Rainforest
9.
J Texture Stud ; 55(3): e12838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816187

ABSTRACT

The number of plant-based meat products on supermarket shelves around the world has grown in recent years however reproducing the sensory experience of eating meat remains a challenge. This study aims to evaluate the sensory gaps between animal and plant-based meat products, specifically burger-type products, from the Australian market. The sample set of 19 commercially available burgers comprises 8 animal-based burgers prepared using beef, chicken, kangaroo, pork, or turkey and 11 high protein plant-based burgers. Vegetable patties are beyond the scope of this study. A trained sensory panel (n = 14) determined the major differences in aroma, texture, flavor, and aftertaste between meat and meat analogues during oral processing, particularly those that may impact consumer acceptability. The animal-based burgers scored high for meaty (aroma), meaty (flavor), and umami but not legume, vegetative, bitterness, and lingering spice attributes. They also received higher average scores for juiciness, fattiness, and final moistness than the plant-based burgers but scored lower in cohesiveness. The plant-based burgers scored high for legume and bitterness but not meaty (aroma), meaty (flavor), and umami attributes. Improving current products and designing new products with desirable sensory properties will enhance consumer acceptability and reinforce recent growth in the plant-based meats market.


Subject(s)
Consumer Behavior , Meat Products , Odorants , Taste , Animals , Humans , Meat Products/analysis , Cattle , Odorants/analysis , Australia , Adult , Swine , Chickens , Female , Male , Turkeys , Macropodidae , Middle Aged , Meat/analysis
10.
Biol Lett ; 20(3): 20240045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531413

ABSTRACT

In assessments of skeletal variation, allometry (disproportionate change of shape with size) is often corrected to examine size-independent variation for hypotheses relating to function. However, size-related trade-offs in functional demands may themselves be an underestimated driver of mammalian cranial diversity. Here, we use geometric morphometrics alongside dental measurements to assess craniodental allometry in the rock-wallaby genus Petrogale (all 17 species, 370 individuals). We identified functional aspects of evolutionary allometry that can be both extensions of, and correlated negatively with, static or ontogenetic allometric patterns. Regarding constraints, larger species tended to have relatively smaller braincases and more posterior orbits, the former of which might represent a constraint on jaw muscle anatomy. However, they also tended to have more anterior dentition and smaller posterior zygomatic arches, both of which support the hypothesis of relaxed bite force demands and accommodation of different selective pressures that favour facial elongation. By contrast, two dwarf species had stouter crania with divergent dental adaptations that together suggest increased relative bite force capacity. This likely allows them to feed on forage that is mechanically similar to that consumed by larger relatives. Our results highlight a need for nuanced considerations of allometric patterns in future research of mammalian cranial diversity.


Subject(s)
Macropodidae , Skull , Animals , Biological Evolution , Bite Force , Skull/anatomy & histology
11.
J Zoo Wildl Med ; 55(1): 285-289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453513

ABSTRACT

Joint luxations commonly occur in animals secondary to traumatic injury. Because of the unique hind-limb anatomy of macropods, surgical stabilization of orthopedic injuries is considered challenging, and reports of successful management are limited. A 4-yr-old male neutered red kangaroo (Osphranter rufus) presented with a dorsolateral luxation of the left tibiotarsal joint. Surgical reduction and tarsal arthrodesis were performed. Although the full range of motion of the tarsal joint was limited, this kangaroo was still able to ambulate normally at slow speeds following surgery and recovery. The aim of this report was to describe the surgical and postoperative management of a tibiotarsal luxation in a kangaroo. There were significant postoperative complications in this kangaroo, and antibiotic regional limb perfusion was used to treat wound and implant infection.


Subject(s)
Joint Dislocations , Macropodidae , Male , Animals , Joint Dislocations/surgery , Joint Dislocations/veterinary , Postoperative Complications/veterinary , Range of Motion, Articular
12.
Aust Vet J ; 102(5): 256-263, 2024 May.
Article in English | MEDLINE | ID: mdl-38361144

ABSTRACT

A mortality event involving 23 allied rock-wallabies (Petrogale assimilis) displaying neurological signs and sudden death occurred in late April to May 2021 in a suburban residential area directly adjacent to Magnetic Island National Park, on Magnetic Island (Yunbenun), North Queensland, Australia. Three allied rock-wallabies were submitted for necropsy, and in all three cases, the cause of death was disseminated toxoplasmosis. This mortality event was unusual because only a small, localised population of native wallabies inhabiting a periurban area on a tropical island in the Great Barrier Reef World Heritage Area were affected. A disease investigation determined the outbreak was likely linked to the presence of free-ranging feral and domesticated cats inhabiting the area. There were no significant deaths of other wallabies or wildlife in the same or other parts of Magnetic Island (Yunbenun) at the time of the outbreak. This is the first reported case of toxoplasmosis in allied rock-wallabies (Petrogale assimilis), and this investigation highlights the importance of protecting native wildlife species from an infectious and potentially fatal parasitic disease.


Subject(s)
Disease Outbreaks , Macropodidae , Toxoplasmosis, Animal , Animals , Cats , Animals, Wild/parasitology , Disease Outbreaks/veterinary , Epidemics/veterinary , Islands , Macropodidae/parasitology , Queensland/epidemiology , Toxoplasma , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/mortality
13.
Aust Vet J ; 102(7): 331-338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38351862

ABSTRACT

Phalaris aquatica is pasture species introduced into Australia during early European settlement. Consumption of the plant can cause the neurological condition chronic phalaris toxicity (CPT) in sheep and cattle. In recent years, there has been an increase in reports of CPT in macropods, which has raised concerns regarding its impacts on their welfare. Currently, little is known about the distribution or seasonal patterns of this disease in wildlife, information pivotal in assessing its potential risks. Between 2021 and 2022, we conducted a survey targeting government bodies, veterinary businesses and wildlife organisations to investigate the locations and time of occurrence of CPT in macropods in the state of Victoria, Australia. We received 13 survey responses, 12 verbal reports, a full record of investigated cases from a university veterinary school and cases from a wildlife rescue organisation. Over the period of 11 years, Victoria had 918 cases of CPT recorded in macropods from 36 local government areas, with cases concentrated centrally just north of the state capital of Melbourne and July (midwinter) being the month with the highest case count (n = 220). There was a significant positive correlation between case count and both the abundance of kangaroos (Macropus giganteus and Macropus fuliginosus) (P < 0.01) and the abundance of P. aquatica (P = 0.009), and a significant negative correlation between annual case count and average rainfall of March (P = 0.016) and April (P = 0.02). Understanding these relationships will assist land and wildlife managers in predicting the risk and magnitude of disease outbreaks of CPT each in Victoria.


Subject(s)
Macropodidae , Seasons , Animals , Victoria/epidemiology , Animals, Wild , Plant Poisoning/veterinary , Plant Poisoning/epidemiology , Surveys and Questionnaires
14.
J Comp Physiol B ; 194(1): 53-64, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38336838

ABSTRACT

Interactions of solar radiation with mammal fur are complex. Reflection of radiation in the visible spectrum provides colour that has various roles, including sexual display and crypsis, i.e., camouflage. Radiation that is absorbed by a fur coat is converted to heat, a proportion of which impacts on the skin. Not all absorption occurs at the coat surface, and some radiation penetrates the coat before being absorbed, particularly in lighter coats. In studies on this phenomenon in kangaroos, we found that two arid zone species with the thinnest coats had similar effective heat load, despite markedly different solar reflectances. These kangaroos were Red Kangaroos (Osphranter rufus) and Western Grey Kangaroos (Macropus fuliginosus).Here we examine the connections between heat flow patterns associated with solar radiation, and the physical structure of these coats. Also noted are the impacts of changing wind speed. The modulation of solar radiation and resultant heat flows in these coats were measured at wind speeds from 1 to 10 m s-1 by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum like solar radiation was used as a proxy for the sun. The integrated reflectance across the solar spectrum was higher in the red kangaroos (40 ± 2%) than in the grey kangaroos (28 ± 1%). Fur depth and insulation were not different between the two species, but differences occurred in fibre structure, notably in fibre length, fibre density and fibre shape. Patterns of heat flux within the species' coats occurred despite no overall difference in effective solar heat load. We consider that an overarching need for crypsis, particularly for the more open desert-adapted red kangaroo, has led to the complex adaptations that retard the penetrance of solar radiation into its more reflective fur.


Subject(s)
Hot Temperature , Macropodidae , Animals , Macropodidae/physiology , Color , Body Temperature Regulation/physiology , Body Temperature/physiology
15.
J Orthop Res ; 42(6): 1180-1189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38245841

ABSTRACT

Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations.


Subject(s)
Cryopreservation , Tendons , Tensile Strength , Animals , Tendons/physiology , Biomechanical Phenomena , Macropodidae/physiology , Freezing , Elastic Modulus
16.
Microbiol Spectr ; 12(2): e0514122, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38189277

ABSTRACT

Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.


Subject(s)
Macropodidae , Methanobacteriaceae , Humans , Animals , Swine , Macropodidae/genetics , Methanobacteriaceae/genetics , Methane , Feces , Hydrogen , Ethanol , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Parasitol Res ; 123(1): 107, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253768

ABSTRACT

Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Giardiasis , Humans , Animals , Giardia/genetics , Giardiasis/epidemiology , Giardiasis/veterinary , Cryptosporidium/genetics , Cryptosporidiosis/epidemiology , Ecosystem , Macropodidae
18.
mBio ; 15(2): e0337023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38259066

ABSTRACT

The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.


Subject(s)
Mycobiome , Humans , Pregnancy , Animals , Female , Phylogeny , Anaerobiosis , Placenta , Macropodidae , Mammals , Fungi
19.
Heredity (Edinb) ; 132(1): 5-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952041

ABSTRACT

The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.


Subject(s)
Genomic Imprinting , Macropodidae , Proteins , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , Pregnancy , DNA Methylation , Eutheria/genetics , Eutheria/metabolism , Macropodidae/genetics , Macropodidae/metabolism , Placenta/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteins/genetics , Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Semen/metabolism
20.
Int J Parasitol ; 54(3-4): 131-137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38097034

ABSTRACT

Toxoplasma gondii is an apicomplexan protozoan parasite that can infect mammals and birds. The infection can cause acute toxoplasmosis and death in susceptible hosts. Bioassay using cats and mice has been the standard for the isolation of T. gondii from infected hosts for the past several decades. However, bioassay is labor-intensive, expensive, and involves using laboratory animals. To search alternative approaches and o work towards replacement of animal experiments, we summarized the key literature and conducted four experiments to isolate T. gondii in vitro by cell culture. A few heart tissue samples from animals with the highest antibody titers in a given collection were used for T. gondii isolation. These experiments included samples from five out of 51 wild ducks, four of 46 wild turkeys, six of 24 white-tailed deer, as well as from six kangaroos that had died with acute toxoplasmosis in a zoo. These experiments resulted in three isolates from five chronically infected wild ducks (60%), four isolates from four chronically infected wild turkeys (100%), one isolate from six chronically infected white-tailed deer (17%), and four isolates from six kangaroos with acute toxoplasmosis (67%). In addition, five isolates from the five chronically infected wild ducks were obtained by bioassay in mice, showing a 100% success rate, which is higher than the 60% rate by direct cell culture. These T. gondii isolates were successfully propagated in human foreskin fibroblast (HFF) or Vero cells, and genotyped by multilocus PCR-RFLP markers. The results showed that it is practical to isolate T. gondii directly in cell culture. Although the cell culture approach may not be as sensitive as the bioassay, it does provide an alternative that is simple, cost-effective, ethically more acceptable, and less time-sensitive to isolate T. gondii. In this paper we propose a procedure that may be applied and further optimized for isolation of T. gondii.


Subject(s)
Deer , Toxoplasma , Toxoplasmosis, Animal , Chlorocebus aethiops , Animals , Humans , Mice , Deer/parasitology , Macropodidae , Vero Cells , Toxoplasmosis, Animal/parasitology , Genotype , Cell Culture Techniques , Biological Assay/veterinary , Antibodies, Protozoan
SELECTION OF CITATIONS
SEARCH DETAIL
...