Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 408
Filter
1.
Planta ; 259(6): 143, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704489

ABSTRACT

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Subject(s)
Cenchrus , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Cenchrus/genetics , Phylogeny , Magnaporthe/physiology , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Genome, Plant/genetics , Pennisetum/genetics , Pennisetum/microbiology , Pennisetum/immunology
2.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38664971

ABSTRACT

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/genetics , Oryza/metabolism , Oryza/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Plant Immunity , Magnaporthe/physiology , Ascomycota/physiology
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542408

ABSTRACT

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Septins/metabolism , Fungal Proteins/metabolism , Magnaporthe/physiology , Cytoskeleton/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Spores, Fungal/metabolism , Gene Expression Regulation, Fungal
4.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473921

ABSTRACT

Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Carrier Proteins/metabolism , Magnaporthe/physiology , Ascomycota/metabolism , Microtubules/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism
5.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396893

ABSTRACT

Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Plant Breeding , Proteins/metabolism , Disease Resistance/genetics , Leucine-Rich Repeat Proteins , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Plant Biotechnol J ; 22(6): 1740-1756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38294722

ABSTRACT

Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Transcription Factors , Oryza/genetics , Oryza/microbiology , Oryza/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Gene Expression Regulation, Plant , Magnaporthe/physiology , Ascomycota
7.
New Phytol ; 241(2): 827-844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974472

ABSTRACT

Strigolactones (SLs) are carotenoid-derived phytohormones that regulate plant growth and development. While root-secreted SLs are well-known to facilitate plant symbiosis with beneficial microbes, the role of SLs in plant interactions with pathogenic microbes remains largely unexplored. Using genetic and biochemical approaches, we demonstrate a negative role of SLs in rice (Oryza sativa) defense against the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We found that SL biosynthesis and perception mutants, and wild-type (WT) plants after chemical inhibition of SLs, were less susceptible to P. oryzae. Strigolactone deficiency also resulted in a higher accumulation of jasmonates, soluble sugars and flavonoid phytoalexins in rice leaves. Likewise, in response to P. oryzae infection, SL signaling was downregulated, while jasmonate and sugar content increased markedly. The jar1 mutant unable to synthesize jasmonoyl-l-isoleucine, and the coi1-18 RNAi line perturbed in jasmonate signaling, both accumulated lower levels of sugars. However, when WT seedlings were sprayed with glucose or sucrose, jasmonate accumulation increased, suggesting a reciprocal positive interplay between jasmonates and sugars. Finally, we showed that functional jasmonate signaling is necessary for SL deficiency to induce rice defense against P. oryzae. We conclude that a reduction in rice SL content reduces P. oryzae susceptibility by activating jasmonate and sugar signaling pathways, and flavonoid phytoalexin accumulation.


Subject(s)
Magnaporthe , Oryza , Sugars/metabolism , Oryza/metabolism , Flavonoids/metabolism , Phytoalexins , Magnaporthe/physiology , Plant Diseases/microbiology
8.
J Exp Bot ; 75(5): 1565-1579, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37976240

ABSTRACT

Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Magnaporthe , Oryza , Disease Resistance/genetics , Antigen-Antibody Complex/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/metabolism , Chitin/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Magnaporthe/physiology , Protein Kinases/metabolism , Arabidopsis Proteins/metabolism
9.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003241

ABSTRACT

The intricate regulatory process governing rice immunity against the blast fungus Magnaporthe oryzae remains a central focus in plant-pathogen interactions. In this study, we investigated the important role of Osa-miR11117, an intergenic microRNA, in regulating rice defense mechanisms. Stem-loop qRT-PCR analysis showed that Osa-miR11117 is responsive to M. oryzae infection, and overexpression of Osa-miR11117 compromises blast resistance. Green fluorescent protein (GFP)-based reporter assay indicated OsPAO4 is one direct target of Osa-miR11117. Furthermore, qRT-PCR analysis showed that OsPAO4 reacts to M. oryzae infection and polyamine (PA) treatment. In addition, OsPAO4 regulates rice resistance to M. oryzae through the regulation of PA accumulation and the expression of the ethylene (ETH) signaling genes. Taken together, these results suggest that Osa-miR11117 is targeting OsPAO4 to regulate blast resistance by adjusting PA metabolism and ETH signaling pathways.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Oryza/metabolism , Magnaporthe/physiology , Plant Diseases/microbiology , Disease Resistance/genetics
10.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298247

ABSTRACT

Calcineurin, a key regulator of the calcium signaling pathway, is involved in calcium signal transduction and calcium ion homeostasis. Magnaporthe oryzae is a devastating filamentous phytopathogenic fungus in rice, yet little is known about the function of the calcium signaling system. Here, we identified a novel calcineurin regulatory-subunit-binding protein, MoCbp7, which is highly conserved in filamentous fungi and was found to localize in the cytoplasm. Phenotypic analysis of the MoCBP7 gene deletion mutant (ΔMocbp7) showed that MoCbp7 influenced the growth, conidiation, appressorium formation, invasive growth, and virulence of M. oryzae. Some calcium-signaling-related genes, such as YVC1, VCX1, and RCN1, are expressed in a calcineurin/MoCbp7-dependent manner. Furthermore, MoCbp7 synergizes with calcineurin to regulate endoplasmic reticulum homeostasis. Our research indicated that M. oryzae may have evolved a new calcium signaling regulatory network to adapt to its environment compared to the fungal model organism Saccharomyces cerevisiae.


Subject(s)
Magnaporthe , Oryza , Virulence/genetics , Calcineurin/genetics , Calcineurin/metabolism , Carrier Proteins/metabolism , Calcium Signaling , Calcium/metabolism , Magnaporthe/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Spores, Fungal
11.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239859

ABSTRACT

Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Proteomics , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
12.
J Basic Microbiol ; 63(7): 734-745, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37032320

ABSTRACT

Serendipita indica, a multifunctional and useful endophyte fungus, has been intensively investigated in promoting plant growth and resistance towards biotic and abiotic stress. Multiple chitinases from microorganisms or plants have been identified to have a high antifungal activity as a biological control. However, chitinase of S. indica still needs to be characterized. We functionally characterized a chitinase (SiChi) in S. indica. The result showed that the purified SiChi protein confers high chitinase activity; importantly, SiChi inhibits the conidial germination of Magnaporthe oryzae and Fusarium moniliforme. After the successful colonization of rice roots by S. indica, both the rice blast disease and bakanae disease were significantly reduced. Interestingly, the purified SiChi could promptly induce rice disease resistance towards M. oryzae and F. moniliforme pathogens when sprayed on rice leaves. Like S. indica, SiChi could upregulate rice pathogen-resistant proteins and defense enzymes. In conclusion, chitinase of S. indica has direct antifungal activity and indirect induced resistance activity, implying an efficient and economic strategy for rice disease control by applying S. indica and SiChi.


Subject(s)
Basidiomycota , Chitinases , Magnaporthe , Oryza , Chitinases/pharmacology , Chitinases/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Magnaporthe/physiology , Basidiomycota/metabolism , Oryza/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology
13.
J Exp Bot ; 74(14): 4143-4157, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37010326

ABSTRACT

Plant amino acid transporters regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also the amount of amino acids in leaves hijacked by invading pathogens. However, the function of amino acid transporters in plant defense responses to pathogen infection remains unknown. In this study, we found that the rice amino acid transporter gene OsLHT1 was expressed in leaves and up-regulated by maturation, N starvation, and inoculation of the blast fungus Magnaporthe oryzae. Knock out of OsLHT1 resulted in development stage- and N supply-dependent premature senescence of leaves at the vegetative growth stage. In comparison with the wild type, Oslht1 mutant lines showed sustained rusty red spots on fully mature leaf blades irrespective of N supply levels. Notably, no relationship between the severity of leaf rusty red spots and concentration of total N or amino acids was found in Oslht1 mutants at different developmental stages. Disruption of OsLHT1 altered transport and metabolism of amino acids and biosynthesis of flavones and flavonoids, enhanced expression of jasmonic acid- and salicylic acid-related defense genes, production of jasmonic acid and salicylic acid, and accumulation of reactive oxygen species. OsLHT1 inactivation dramatically prevented the leaf invasion by M. oryzae, a hemi-biotrophic ascomycete fungus. Overall, these results establish a link connecting the activity of an amino acid transporter with leaf metabolism and defense against rice blast fungus.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Plant Senescence , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Salicylates/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Plant Leaves/metabolism
14.
Plant Biotechnol J ; 21(8): 1590-1610, 2023 08.
Article in English | MEDLINE | ID: mdl-37102249

ABSTRACT

Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.


Subject(s)
Magnaporthe , Oryza , Xanthomonas , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitination , Disease Resistance/genetics , Plant Diseases/genetics , Magnaporthe/physiology , Gene Expression Regulation, Plant/genetics
15.
Mol Plant ; 16(4): 739-755, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36872602

ABSTRACT

During effector-triggered immunity (ETI) against the devastating rice blast pathogen Magnaporthe oryzae, Pi9 functions as an intracellular resistance protein sensing the pathogen-secreted effector AvrPi9 in rice. Importantly, the underlying recognition mechanism(s) between Pi9 and AvrPi9 remains elusive. In this study, we identified a rice ubiquitin-like domain-containing protein (UDP), AVRPI9-INTERACTING PROTEIN 1 (ANIP1), which is directly targeted by AvrPi9 and also binds to Pi9 in plants. Phenotypic analysis of anip1 mutants and plants overexpressing ANIP1 revealed that ANIP1 negatively modulates rice basal defense against M. oryzae. ANIP1 undergoes 26S proteasome-mediated degradation, which can be blocked by both AvrPi9 and Pi9. Moreover, ANIP1 physically associates with the rice WRKY transcription factor OsWRKY62, which also interacts with AvrPi9 and Pi9 in plants. In the absence of Pi9, ANIP1 negatively regulates OsWRKY62 abundance, which can be promoted by AvrPi9. Accordingly, knocking out of OsWRKY62 in a non-Pi9 background decreased immunity against M. oryzae. However, we also observed that OsWRKY62 plays negative roles in defense against a compatible M. oryzae strain in Pi9-harboring rice. Pi9 binds to ANIP1 and OsWRKY62 to form a complex, which may help to keep Pi9 in an inactive state and weaken rice immunity. Furthermore, using competitive binding assays, we showed that AvrPi9 promotes Pi9 dissociation from ANIP1, which could be an important step toward ETI activation. Taken together, our results reveal an immune strategy whereby a UDP-WRKY module, targeted by a fungal effector, modulates rice immunity in distinct ways in the presence or absence of the corresponding resistance protein.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Uridine Diphosphate/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Disease Resistance/genetics
16.
Plant Physiol ; 192(2): 1621-1637, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36943290

ABSTRACT

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases in rice (Oryza sativa L.). Plant annexins are calcium- and lipid-binding proteins that have multiple functions; however, the biological roles of annexins in plant disease resistance remain unknown. Here, we report a rice annexin gene, OsANN1 (Rice annexin 1), that was induced by M. oryzae infection and negatively regulated blast disease resistance in rice. By yeast 2-hybrid screening, we found that OsANN1 interacted with a cytochrome P450 monooxygenase, HAN1 ("HAN" termed "chilling" in Chinese), which has been reported to catalyze the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile. Pathogen inoculation assays revealed that HAN1 was also a negative regulator in rice blast resistance. Genetic evidence showed that OsANN1 acts upstream of HAN1. OsANN1 stabilizes HAN1 in planta, resulting in the inactivation of the endogenous biologically active JA-Ile. Taken together, our study unravels a mechanism where an OsANN1-HAN1 module impairs blast disease resistance via inactivating biologically active JA-Ile and JA signaling in rice.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Calcium-Binding Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclopentanes/metabolism , Annexins/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Magnaporthe/physiology
17.
Proc Natl Acad Sci U S A ; 120(13): e2211102120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36952381

ABSTRACT

Receptor-like kinases (RLKs) may initiate signaling pathways by perceiving and transmitting environmental signals to cellular machinery and play diverse roles in plant development and stress responses. The rice genome encodes more than one thousand RLKs, but only a small number have been characterized as receptors for phytohormones, polypeptides, elicitors, and effectors. Here, we screened the function of 11 RLKs in rice resistance to the blast fungus Magnaporthe oryzae (M. oryzae) and identified a negative regulator named BDR1 (Blast Disease Resistance 1). The expression of BDR1 was rapidly increased under M. oryzae infection, while silencing or knockout of BDR1 significantly enhanced M. oryzae resistance in two rice varieties. Protein interaction and kinase activity assays indicated that BDR1 directly interacted with and phosphorylated mitogen-activated kinase 3 (MPK3). Knockout of BDR1 compromised M. oryzae-induced MPK3 phosphorylation levels. Moreover, transcriptome analysis revealed that M. oryzae-elicited jasmonate (JA) signaling and terpenoid biosynthesis pathway were negatively regulated by BDR1 and MPK3. Mutation of JA biosynthetic (allene oxide cyclase (AOC)/signaling (MYC2) genes decreased rice resistance to M. oryzae. Besides diterpenoid, the monoterpene linalool and the sesquiterpene caryophyllene were identified as unique defensive compounds against M. oryzae, and their biosynthesis genes (TPS3 and TPS29) were transcriptionally regulated by JA signaling and suppressed by BDR1 and MPK3. These findings demonstrate the existence of a BDR1-MPK3 cascade that negatively mediates rice blast resistance by affecting JA-related defense responses.


Subject(s)
Magnaporthe , Oryza , Cyclopentanes/metabolism , Oxylipins/metabolism , Signal Transduction , Plant Growth Regulators/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Magnaporthe/physiology
18.
Plant Cell ; 35(5): 1360-1385, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36808541

ABSTRACT

The rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus. Our analysis revealed major temporal changes in fungal gene expression during plant infection. Pathogen gene expression could be classified into 10 modules of temporally co-expressed genes, providing evidence for the induction of pronounced shifts in primary and secondary metabolism, cell signaling, and transcriptional regulation. A set of 863 genes encoding secreted proteins are differentially expressed at specific stages of infection, and 546 genes named MEP (Magnaportheeffector protein) genes were predicted to encode effectors. Computational prediction of structurally related MEPs, including the MAX effector family, revealed their temporal co-regulation in the same co-expression modules. We characterized 32 MEP genes and demonstrate that Mep effectors are predominantly targeted to the cytoplasm of rice cells via the biotrophic interfacial complex and use a common unconventional secretory pathway. Taken together, our study reveals major changes in gene expression associated with blast disease and identifies a diverse repertoire of effectors critical for successful infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Ascomycota/metabolism , Signal Transduction , Cytoplasm/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
19.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834598

ABSTRACT

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases of rice worldwide. Secreted proteins play essential roles during a M. oryzae-rice interaction. Although much progress has been made in recent decades, it is still necessary to systematically explore M. oryzae-secreted proteins and to analyze their functions. This study employs a shotgun-based proteomic analysis to investigate the in vitro secretome of M. oryzae by spraying fungus conidia onto the PVDF membrane to mimic the early stages of infection, during which 3315 non-redundant secreted proteins were identified. Among these proteins, 9.6% (319) and 24.7% (818) are classified as classically or non-classically secreted proteins, while the remaining 1988 proteins (60.0%) are secreted through currently unknown secretory pathway. Functional characteristics analysis show that 257 (7.8%) and 90 (2.7%) secreted proteins are annotated as CAZymes and candidate effectors, respectively. Eighteen candidate effectors are selected for further experimental validation. All 18 genes encoding candidate effectors are significantly up- or down-regulated during the early infection process. Sixteen of the eighteen candidate effectors cause the suppression of BAX-mediated cell death in Nicotiana benthamiana by using an Agrobacterium-mediated transient expression assay, suggesting their involvement in pathogenicity related to secretion effectors. Our results provide high-quality experimental secretome data of M. oryzae and will expand our knowledge on the molecular mechanisms of M. oryzae pathogenesis.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Proteomics , Fungal Proteins/metabolism , Ascomycota/metabolism , Oryza/metabolism , Plant Diseases/microbiology
20.
J Integr Plant Biol ; 65(3): 854-875, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36308720

ABSTRACT

NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.


Subject(s)
Magnaporthe , Oryza , Transcription Factors/metabolism , Oryza/genetics , Magnaporthe/physiology , Plant Immunity/physiology , Gene Expression Regulation, Plant , Chitin/metabolism , Plant Diseases/genetics , Plant Proteins/metabolism , Disease Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...