Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.286
Filter
1.
Nanotechnology ; 35(32)2024 May 24.
Article in English | MEDLINE | ID: mdl-38701766

ABSTRACT

One of the global challenges for living things is to provide pollution and harmful microbes-free environment. In this study, magnetically retrievable spinel-structured manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) (MZF) was synthesized by a facile solvothermal method. Further, the MZF with different weight percentages (10 wt%, 50 wt%, and 80 wt%) were supported on reduced graphene oxide (rGO). The phase purity and morphology of MZF and MZF/rGO nanocomposite were confirmed by x-ray diffraction technique and scanning electron microscopy, respectively. The Fourier transform infrared spectroscopy, Raman, UV-visible spectroscopy, and thermogravimetric analyses of the as-synthesized nanocomposites were examined for the detection of various chemical groups, band gap, and thermal properties, respectively. The MZF/rGO nanocomposite exhibited significant antibacterial and antifungal activity againstEggerthella lenta, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa,andCandida albicanscompared to bare MZF and rGO. The high surface area of rGO plays a crucible role in antimicrobial analysis. Additionally, the antibacterial and antifungal activity is compared by synthesizing various metal ferrites such as MnFe2O4, ZnFe2O4, and Fe3O4. The 50 wt% MZF/rGO nanocomposite exhibits significantly high antibacterial activity. However, 10 wt% MZF/rGO nanocomposite shows good antifungal activity than Fe3O4, MnFe2O4, ZnFe2O4, MnZnFe2O4, 50 wt%, and 80 wt% MZF/rGO nanocomposites. These findings suggest that the prepared ferrite nanocomposites hold promise for microbial inhibition.


Subject(s)
Bacteria , Ferric Compounds , Fungi , Graphite , Nanocomposites , Graphite/chemistry , Graphite/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Nanocomposites/chemistry , Fungi/drug effects , Bacteria/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Zinc/chemistry , Zinc/pharmacology , Aluminum Oxide , Magnesium Oxide
2.
Chemosphere ; 359: 142224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723693

ABSTRACT

Environmental remediation has sought several innovative ways for the treatment of wastewater and captivated researchers around the globe towards it. Through this study, we aim to proceed with the efforts to foster sustainable and feasible ways for the treatment of wastewater. In this work, we report the sol-gel synthesis of CuO/MgO/ZnO nanocomposite and carry out their systematic characterization with the help of state-of-the-art analytical techniques, such as FTIR, SEM, TEM, PL, XRD, Raman, and AFM. The SEM along with TEM and AFM provided useful insights into the surface morphology of the synthesized nanocomposite on both 2D and 3D surfaces and concluded the well-dispersed behavior of the nanocomposite. The characteristic functional groups responsible for carrying out the reaction of Cu-O, Mg-O, and Zn-O were identified by FTIR spectroscopy. On the other hand, crystal size, dislocation density, and microstrain of the nanocomposite were calculated by XRD. For optical studies, photoluminescence spectroscopy was performed. Once the characterization of the nanocomposite was done, they were eventually treated against the toxic organic dye, methylene blue. The calculated rate constant values of k for CuO was 2.48 × 10-3 min-1, for CuO/MgO (2.04 × 10-3 min-1), for CuO/ZnO (1.82 × 10-3 min-1) and CuO/MgO/ZnO was found to be 2.00 × 10-3 min-1. It has become increasingly evident that nanotechnology can be used in various facets of modern life, and its implementation in wastewater treatment has recently received much attention.


Subject(s)
Copper , Environmental Restoration and Remediation , Magnesium Oxide , Nanocomposites , Zinc Oxide , Nanocomposites/chemistry , Zinc Oxide/chemistry , Copper/chemistry , Environmental Restoration and Remediation/methods , Catalysis , Magnesium Oxide/chemistry , Light , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Methylene Blue/chemistry
3.
Oncol Rep ; 51(5)2024 May.
Article in English | MEDLINE | ID: mdl-38577936

ABSTRACT

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Butyric Acid/pharmacology , Janus Kinase 2/metabolism , Magnesium Oxide/metabolism , NF-E2-Related Factor 2/metabolism , Pyruvaldehyde/metabolism , STAT3 Transcription Factor/metabolism
4.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Article in English | MEDLINE | ID: mdl-38585472

ABSTRACT

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Subject(s)
Graphite , MicroRNAs , Nanocomposites , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Circular , In Situ Hybridization, Fluorescence , Magnesium Oxide , Cells, Cultured , Bone Regeneration , Magnetic Phenomena , Cell Differentiation
5.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633155

ABSTRACT

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Subject(s)
Calcium Compounds , Metal Nanoparticles , Zinc Oxide , Animals , Escherichia coli , Magnesium Oxide , Milk , Oxides , Anti-Bacterial Agents
6.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611866

ABSTRACT

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Subject(s)
Honey , Phenylenediamines , Magnesium Oxide , Glyoxal , Pyruvaldehyde
7.
Sci Total Environ ; 926: 172172, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38575019

ABSTRACT

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Subject(s)
Fertilizers , Magnesium , Struvite/chemistry , Magnesium/chemistry , Fertilizers/analysis , Magnesium Oxide , Phosphorus/chemistry , Charcoal/chemistry , Soil/chemistry , Nitrogen/analysis
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673825

ABSTRACT

This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.


Subject(s)
Bone Regeneration , Green Chemistry Technology , Magnesium Oxide , Plant Extracts , Spectrum Analysis, Raman , Magnesium Oxide/chemistry , Green Chemistry Technology/methods , Bone Regeneration/drug effects , Plant Extracts/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , X-Ray Diffraction
9.
Environ Sci Pollut Res Int ; 31(20): 30149-30162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602634

ABSTRACT

Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.


Subject(s)
Cell Wall , Endoplasmic Reticulum Stress , Magnesium Oxide , Nanoparticles , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Magnesium Oxide/toxicity , Endoplasmic Reticulum Stress/drug effects , Cell Wall/drug effects , Nanoparticles/toxicity , Reactive Oxygen Species/metabolism , Autophagy/drug effects
10.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Article in English | MEDLINE | ID: mdl-38599419

ABSTRACT

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Subject(s)
Carbon , Fructose , Glucose , Lignin , Magnesium Oxide , Fructose/chemistry , Lignin/chemistry , Glucose/chemistry , Carbon/chemistry , Porosity , Magnesium Oxide/chemistry , Catalysis , Isomerism
11.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38573334

ABSTRACT

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Subject(s)
Hibiscus , Magnesium Oxide , Osteoporosis , Hibiscus/chemistry , Humans , Osteoporosis/drug therapy , Magnesium Oxide/chemistry , Ferric Compounds/chemistry , Plant Extracts/chemistry , Female , Male , Calcium/chemistry , Molecular Docking Simulation , Metal Nanoparticles/chemistry , Middle Aged , Oxides/chemistry , Alkaline Phosphatase/metabolism , Cholecalciferol/chemistry , Cholecalciferol/pharmacology
12.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612389

ABSTRACT

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Subject(s)
Biofuels , Zeolites , Magnesium Oxide , Methanol , Rapeseed Oil , Silicon Dioxide , Fatty Acids , Oxides
13.
Int J Biol Macromol ; 265(Pt 2): 130835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492694

ABSTRACT

An unexplored hybrid superporous hydrogel (MHSPH) of Dillenia indica fruit mucilage (DIFM) and carrageenan blend embedded with green synthesized magnesium oxide nanoparticles (MNPs) is utilized as an effective wound dressing material with appreciable mechanical strength in murine model. The prepared MNPs and the optimized MHSPH were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT- IR) spectroscopy. Size, zeta potential and morphology of MNPs was assessed using Dynamic light scattering technique (DLS) and field-emission scanning electron microscopy (FESEM) respectively. The MHSPH grades were further optimized using swelling study in phosphate buffer solution at pH 1.2, 7.0, and 8. Both MNPs and the optimized grade of MHSPH were evaluated based on hemolysis assay, and protein denaturation assays indicating them to be safe for biological use. Acute toxicity studies of the optimized MHSPH on Zebra fish model, revealed no observable toxic effect on the gill cells. Wound healing in Swiss albino mice with application of optimized grade of MHSPH took only 11 days for healing when compared to control mice where healing took 14 days, thus concluding that MHSPH as an effective dressing material as well as tissue regrowth scaffold.


Subject(s)
Dilleniaceae , Metal Nanoparticles , Nanoparticles , Animals , Mice , Carrageenan/chemistry , Hydrogels/chemistry , Magnesium Oxide , Bandages , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry
14.
Chemosphere ; 354: 141735, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499075

ABSTRACT

In Japan, the concentration of fluoride (F-) leached from rocks, such as tuff breccia, excavated in tunnel construction projects often exceeds the Japanese environmental standard of 0.8 mg/L. Because of this, proper disposal methods are necessary for managing F--bearing excavated rocks. One effective solution based on circular economy is the use of an adsorption layer system. This system can simultaneously prevent the migration of F- released from excavated rocks and allow the recycling of this construction waste material. To determine the most suitable material for the disposal of excavated F--bearing tuff breccia from a tunnel construction in Hokkaido, Japan, four types of natural geological materials (S-1, S-2, S-3, and S-4) obtained near the tunnel construction site, as well as three types of commercial adsorbents (calcium (Ca), magnesium (Mg), and CaMg adsorbents) were selected for evaluation. The batch adsorption test results showed that S-1 and S-4 had high adsorption capacities for F-, and the adsorption process followed the Langmuir isotherm. The adsorption of F- to the natural adsorbents was strongly influenced by the pH and the presence of bicarbonate ions (HCO3-), but unaffected by chloride (Cl-) and sulfate (SO42-). There was also a strong positive correlation between the abundance of amorphous aluminum (Al) and iron (Fe) extracted and the adsorption of F-, indicating the importance of ion exchange reactions associated with surface OH- in immobilizing F-. Meanwhile, the Mg-bearing adsorbent exhibited the highest adsorption affinity for F- among the commercial adsorbents. This was attributed to adsorption through electrostatic interactions and coprecipitation with magnesium hydroxide (Mg(OH)2) formed during the hydration of magnesium oxide (MgO). To effectively incorporate these adsorbents into the adsorption layer system, parameters such as permeability and residence time need to be determined in order to maximize the retention of F- through adsorption, ion exchange and coprecipitation reactions.


Subject(s)
Water Pollutants, Chemical , Water Purification , Fluorides , Water Purification/methods , Magnesium Oxide , Aluminum , Magnesium , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
15.
Colloids Surf B Biointerfaces ; 237: 113860, 2024 May.
Article in English | MEDLINE | ID: mdl-38520951

ABSTRACT

Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation. In this research, polycaprolactone/up-conversion nanoparticles/magnesium oxide (PCL/UCNPs/MgO) composite scaffolds were prepared by electrospun based on the luminescence characteristics of up-conversion nanoparticles (UCNPs) under near infrared excitation and the osteogenic ability of MgO. The in vivo and in vitro degradation results showed that with the increase of time, the electrospun scaffolds gradually degraded and its luminescence intensity decreased. The addition of UCNPs can effectively monitor the degradation of the scaffolds. In addition, the prepared electrospun scaffolds had great biocompatibility, among which PCL-1%UCNPs-1%MgO (P1U1M) electrospun scaffolds had obvious effect on promoting osteogenic differentiation of mouse embryonic osteoblasts cells (MC3T3-E1) in vitro. In conclusion, P1U1M electrospun scaffolds have the potential to induce bone regeneration at bone defect sites, and can monitor the degradation of electrospun scaffolds. It may be a potential candidate material for bone regeneration in defect area.


Subject(s)
Osteogenesis , Tissue Scaffolds , Mice , Animals , Tissue Engineering/methods , Magnesium Oxide , Bone Regeneration , Polyesters/pharmacology
16.
Food Chem ; 447: 139056, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513495

ABSTRACT

Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.


Subject(s)
Glycation End Products, Advanced , Magnesium Oxide , Vinyl Compounds , Glycation End Products, Advanced/chemistry , Rapeseed Oil , Phenols/chemistry , Pyruvaldehyde/chemistry
17.
J Dent ; 144: 104952, 2024 May.
Article in English | MEDLINE | ID: mdl-38508442

ABSTRACT

OBJECTIVES: Evaluation of the two-body wear of lithium-silicate ceramics against different antagonists compared to a direct resin composite and human teeth. METHODS: Initial LiSi Block [LISI], IPS e.max CAD [EMA], and CEREC Tessera [TESE] were investigated and compared with direct resin composite [FILL] and human teeth [tooth]. As antagonists were used: steatite, ceramic, and human enamel. The control group tooth was only tested with enamel antagonist. The combinations underwent thermomechanical aging using a chewing simulator. Material losses were calculated using GOM-analysis software. Kolmogorov-Smirnov test, Kruskal-Wallis H, Mann-Whitney-U-test with Bonferroni correction and Spearman-rho correlation were calculated. A fractographic analysis was performed. RESULTS: Within TESE, enamel antagonists led to lower restoration losses than steatite and ceramic antagonists. Within FILL, enamel and steatite antagonists caused lower material losses compared to ceramic antagonists. Against steatite antagonists, LISI showed lowest material losses. Against ceramic antagonists, the use of LISI led to lower material losses compared to FILL. Against tooth antagonists, TESE showed lower material losses than tooth and FILL and LISI lower than FILL. Within LISI, steatite antagonists showed lower material losses on the antagonist than ceramic. Within EMA, steatite antagonists showed higher material losses than ceramic ones. Within ceramic antagonists, LISI restoration material showed lower material losses than FILL and EMA. CONCLUSIONS: Regardless of the antagonist material, the material losses of LISI and EMA were comparable. However, the abrasion resistance of LISI tended to be higher than EMA. CLINICAL SIGNIFICANCE: LISI is a fully crystallized lithium-silicate ceramic and no longer needs to be processed after milling. In addition, the abrasion resistance is very good, regardless of the antagonist material chosen.


Subject(s)
Ceramics , Composite Resins , Dental Enamel , Dental Porcelain , Magnesium Oxide , Materials Testing , Silicon Dioxide , Humans , Composite Resins/chemistry , Dental Porcelain/chemistry , Dental Enamel/drug effects , Ceramics/chemistry , Dental Materials/chemistry , Silicates/chemistry , Surface Properties , Dental Restoration Wear , Computer-Aided Design , Lithium
18.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38529939

ABSTRACT

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Subject(s)
Citrus , Hesperidin/analogs & derivatives , Pyruvaldehyde , Humans , Animals , Mice , Glyoxal , Synephrine , Tandem Mass Spectrometry , Magnesium Oxide , Flowers
19.
Sci Total Environ ; 926: 171808, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508273

ABSTRACT

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Subject(s)
Propionates , Rumen , Animals , Female , Propionates/metabolism , Methane/metabolism , Magnesium Oxide/metabolism , Diet , Silage/analysis , Ruminants , Acetates/metabolism , Oxygen/metabolism , Animal Feed/analysis , Fermentation , Digestion , Lactation
20.
Int J Biol Macromol ; 264(Pt 1): 130560, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431019

ABSTRACT

Hitherto unreported hybrid nanofillers (CNC:MgO) reinforced chitosan (CTS) based composite (CNC:MgO)/CTS films were synthesized using a solution-casting blend technique and synergistic effect of hybrid nanofiller in terms of properties enhancement were investigated. Optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were used to characterize the films. The hybrid nanofiller considerably changed the transparency and color of the CTS films. The tensile strengths of (3 wt%) CNC/CTS, (3 wt%) MgO/CTS, (1:1)(CNC:MgO)/CTS, (1:2)(CNC:MgO)/CTS and (2:1)(CNC:MgO)/CTS films were 27.49 %, 35.60 %, 91.62 %, 38.22 %, and 29.32 % higher than pristine CTS films respectively, while the water vapor permeation were 28.21 %, 30.77 %, 34.62 %, 38.46 %, and 37.44 % lower than pristine CTS film, respectively. Moreover, the CTS composite films exhibited an improvement in overall water barrier properties after incorporating hybrid nanofillers. Our observations suggest that chitosan-based hybrid nanofiller composite films are a good replacement for plastic-based packaging materials within the food industry.


Subject(s)
Chitosan , Nanoparticles , Cellulose/chemistry , Chitosan/chemistry , Magnesium Oxide , Nanoparticles/chemistry , Food Packaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...