Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 989
Filter
1.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38692266

ABSTRACT

Magnetic nanoparticle hyperthermia (MNPH) has emerged as a promising cancer treatment that complements conventional ionizing radiation and chemotherapy. MNPH involves injecting iron-oxide nanoparticles into the tumor and exposing it to an alternating magnetic field (AMF). Iron oxide nanoparticles produce heat when exposed to radiofrequency AMF due to hysteresis loss. Minimizing the non-specific heating in human tissues caused by exposure to AMF is crucial. A pulse-width-modulated AMF has been shown to minimize eddy-current heating in superficial tissues. This project developed a control strategy based on a simplified mathematical model in MATLAB SIMULINK®to minimize eddy current heating while maintaining a therapeutic temperature in the tumor. A minimum tumor temperature of 43 [°C] is required for at least 30 [min] for effective hyperthermia, while maintaining the surrounding healthy tissues below 39 [°C]. A model predictive control (MPC) algorithm was used to reach the target temperature within approximately 100 [s]. As a constrained MPC approach, a maximum AMF amplitude of 36 [kA/m] and increment of 5 [kA/m/s] were applied. MPC utilized the AMF amplitude as an input and incorporated the open-loop response of the eddy current heating in its dynamic matrix. A conventional proportional integral (PI) controller was implemented and compared with the MPC performance. The results showed that MPC had a faster response (30 [s]) with minimal overshoot (1.4 [%]) than PI controller (115 [s] and 5.7 [%]) response. In addition, the MPC method performed better than the structured PI controller in its ability to handle constraints and changes in process parameters.


Subject(s)
Algorithms , Hyperthermia, Induced , Neoplasms , Hyperthermia, Induced/methods , Humans , Neoplasms/therapy , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/chemistry , Computer Simulation , Magnetic Fields , Models, Theoretical , Temperature , Magnetic Iron Oxide Nanoparticles/chemistry , Models, Biological
2.
Iran Biomed J ; 28(2&3): 71-81, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38770844

ABSTRACT

Background: Bioreductive processes are quite potent, effective and affordable for the synthesis of green NPs, as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of FeONPs derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor. Methods: With focusing on the manufacture of FeONPs via green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines. Results: The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%. Conclusion: Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment and as an effective antimicrobial agent against various diseases.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Green Chemistry Technology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Microbial Sensitivity Tests , Animals , Ferric Compounds/pharmacology , Ferric Compounds/chemistry
3.
Article in English | MEDLINE | ID: mdl-38725229

ABSTRACT

Chronic inflammatory conditions are among the most prevalent diseases worldwide. Several debilitating diseases such as atherosclerosis, inflammatory bowel disease, rheumatoid arthritis, and Alzheimer's are linked to chronic inflammation. These conditions often develop into complex and fatal conditions, making early detection and treatment of chronic inflammation crucial. Current diagnostic methods show high variability and do not account for disease heterogeneity and disease-specific proinflammatory markers, often delaying the disease detection until later stages. Furthermore, existing treatment strategies, including high-dose anti-inflammatory and immunosuppressive drugs, have significant side effects and an increased risk of infections. In recent years, superparamagnetic iron oxide nanoparticles (SPIONs) have shown tremendous biomedical potential. SPIONs can function as imaging modalities for magnetic resonance imaging, and as therapeutic agents due to their magnetic hyperthermia capability. Furthermore, the surface functionalization of SPIONs allows the detection of specific disease biomarkers and targeted drug delivery. This systematic review explores the utility of SPIONs against chronic inflammatory disorders, focusing on their dual role as diagnostic and therapeutic agents. We extracted studies indexed in the Web of Science database from the last 10 years (2013-2023), and applied systematic inclusion criteria. This resulted in a final selection of 38 articles, which were analyzed for nanoparticle characteristics, targeted diseases, in vivo and in vitro models used, and the efficacy of the therapeutic or diagnostic modalities. The results revealed that ultrasmall SPIONs are excellent for imaging arterial and neuronal inflammation. Furthermore, novel therapies using SPIONs loaded with chemotherapeutic drugs show promise in the treatment of inflammatory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Inflammation , Magnetic Iron Oxide Nanoparticles , Humans , Animals , Inflammation/drug therapy , Inflammation/diagnosis , Magnetic Iron Oxide Nanoparticles/chemistry , Chronic Disease , Mice
4.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731585

ABSTRACT

The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Vitamin B 12 , Vitamin B 12/chemistry , Vitamin B 12/analysis , Adsorption , Magnetic Iron Oxide Nanoparticles/chemistry , Limit of Detection , Porosity , Spectroscopy, Fourier Transform Infrared
5.
Anal Chim Acta ; 1308: 342647, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740456

ABSTRACT

BACKGROUND: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.


Subject(s)
Electrochemical Techniques , Electrodes , Glycine , Glyphosate , Graphite , Nitrogen , Photochemical Processes , Graphite/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Nitrogen/chemistry , Polymers/chemistry , Copper/chemistry , Gels/chemistry , Herbicides/analysis , Limit of Detection , Magnetite Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry
6.
Sci Rep ; 14(1): 10723, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730012

ABSTRACT

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Microwaves , Sewage , Sewage/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anaerobiosis , Meat/analysis , Biological Oxygen Demand Analysis , Biofuels/analysis , Food Industry , Industrial Waste
7.
Sci Rep ; 14(1): 11335, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760417

ABSTRACT

Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.


Subject(s)
Biodegradation, Environmental , Hydrocarbons , Petroleum , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Petroleum/metabolism , Lawsonia Plant/chemistry , Lawsonia Plant/metabolism , Pseudomonas aeruginosa/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Glycolipids/chemistry , Glycolipids/metabolism , Spectroscopy, Fourier Transform Infrared , Environmental Pollutants/metabolism
8.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692205

ABSTRACT

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Polyethylene Glycols , Sensitivity and Specificity , Humans , Enzyme-Linked Immunosorbent Assay/methods , Polyethylene Glycols/chemistry , Antigens, Protozoan/immunology , Leishmaniasis/diagnosis , Magnetic Iron Oxide Nanoparticles/chemistry , Antibodies, Protozoan/blood
9.
ACS Appl Mater Interfaces ; 16(21): 27055-27064, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757711

ABSTRACT

A major contributing cause to breast cancer related death is metastasis. Moreover, breast cancer metastasis often shows little symptoms until a large area of the organs is occupied by metastatic cancer cells. Breast cancer multimodal imaging is attractive since it integrates advantages from several modalities, enabling more accurate cancer detection. Glycoprotein CD44 is overexpressed on most breast cancer cells and is the primary cell surface receptor for hyaluronan (HA). To facilitate breast cancer diagnosis, we report an indocyanine green (ICG) and HA conjugated iron oxide nanoparticle (NP-ICG-HA), which enabled active targeting to breast cancer by HA-CD44 interaction and detected metastasis with magnetic particle imaging (MPI) and near-infrared fluorescence imaging (NIR-FI). When evaluated in a transgenic breast cancer mouse model, NP-ICG-HA enabled the detection of multiple breast tumors in MPI and NIR-FI, providing more comprehensive images and a diagnosis of breast cancer. Furthermore, NP-ICG-HAs were evaluated in a lung metastasis model. Upon NP-ICG-HA administration, MPI showed clear signals in the lungs, indicating the tumor sites. This is the first time that HA-based NPs have enabled MPI of cancer. NP-ICG-HAs are an attractive platform for noninvasive detection of primary breast cancer and lung metastasis.


Subject(s)
Breast Neoplasms , Hyaluronic Acid , Indocyanine Green , Lung Neoplasms , Optical Imaging , Hyaluronic Acid/chemistry , Animals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Female , Mice , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Humans , Indocyanine Green/chemistry , Hyaluronan Receptors/metabolism , Cell Line, Tumor , Magnetite Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry
10.
Sci Rep ; 14(1): 11400, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762571

ABSTRACT

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Subject(s)
Anticonvulsants , Drug Delivery Systems , Gelatin , Phenytoin , Silicon Dioxide , Gelatin/chemistry , Anticonvulsants/chemistry , Anticonvulsants/administration & dosage , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Phenytoin/chemistry , Phenytoin/administration & dosage , Drug Delivery Systems/methods , Humans , Ferric Compounds/chemistry , Drug Liberation , Drug Carriers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size
11.
Nanoscale ; 16(18): 9136, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661520

ABSTRACT

Expression of concern for 'Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery' by Xiaoyong Wang et al., Nanoscale, 2013, 5, 8098-8104, https://doi.org/10.1039/C3NR02797J.


Subject(s)
Gadolinium , Magnetic Resonance Imaging , RNA, Small Interfering , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Gadolinium/chemistry , Humans , Ferric Compounds/chemistry , Contrast Media/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Animals
12.
ACS Appl Bio Mater ; 7(5): 3227-3237, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38627897

ABSTRACT

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.


Subject(s)
Cellulose , Magnetic Iron Oxide Nanoparticles , Materials Testing , Nanofibers , Particle Size , Nanofibers/chemistry , Cellulose/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Magnetite Nanoparticles/chemistry
13.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675647

ABSTRACT

This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.


Subject(s)
Contrast Media , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Magnetite Nanoparticles , Theranostic Nanomedicine , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Humans , Gold/chemistry , Dextrans/chemistry , Gadolinium/chemistry , Surface Properties , Hyperthermia, Induced/methods , Particle Size
14.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682177

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Subject(s)
Apoptosis , Folic Acid , Humans , Folic Acid/chemistry , Folic Acid/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Leukemia/drug therapy , Leukemia/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/chemistry , Ferric Compounds/chemistry
15.
Pharm Dev Technol ; 29(4): 383-392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619087

ABSTRACT

A novel approach was devised to address the challenges in delivering cisplatin (CIS) for lung cancer treatment. This involved the development of a non-invasive hydrogel delivery system, aiming to minimize side effects associated with its administration. Using carbopol 971 (CP) and chitosan (CH) at varying ratios, the hydrogels were prepared and loaded with eco-friendly iron oxide nanoparticles (IONPs) conjugated to CIS. The physical properties, yield, drug loading, and cytotoxicity against lung cancer cell lines (A549) were assessed, along with hydrogel rheological properties and in vitro drug diffusion. Hydrogel A1 that composed of 1:1 of CP:CH hydrogel loaded with 100 mg IONPs and 250 µg CIS demonstrated distinctive properties that indicate its suitability for potential delivery. The loaded greenly synthesized IONPs@CIS exhibited a particle size of 23.0 nm, polydispersity index of 0.47, yield of 71.6%, with 88.28% drug loading. They displayed significant cytotoxicity (61.7%) against lung cancer cell lines (A549), surpassing free CIS cytotoxicity (28.1%). Moreover, they demonstrated shear-thinning behaviour, viscoelastic properties, and Fickian drug release profile over 24 h (flux 2.34 µg/cm2/h, and permeability 0.31 cm/h).


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Liberation , Hydrogels , Humans , Cisplatin/pharmacology , Cisplatin/administration & dosage , Hydrogels/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , A549 Cells , Magnetic Iron Oxide Nanoparticles/chemistry , Drug Carriers/chemistry , Particle Size , Green Chemistry Technology/methods , Chitosan/chemistry , Lung Neoplasms/drug therapy , Cell Survival/drug effects , Drug Delivery Systems/methods
16.
ACS Chem Neurosci ; 15(9): 1937-1947, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630556

ABSTRACT

The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1ß, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Heparin , Inflammation , Lithium Chloride , Magnetic Iron Oxide Nanoparticles , Oxidative Stress , Pilocarpine , Animals , Oxidative Stress/drug effects , Rats , Male , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/drug therapy , Lithium Chloride/pharmacology , Heparin/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Hippocampus/drug effects , Hippocampus/metabolism , Anticonvulsants/pharmacology
17.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642138

ABSTRACT

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Subject(s)
Ferric Compounds , Metal Nanoparticles , Satureja , Silver/pharmacology , Silver/metabolism , Metal Nanoparticles/chemistry , Antifungal Agents/pharmacology , Satureja/metabolism , Magnetic Iron Oxide Nanoparticles , X-Ray Diffraction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology
18.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Article in English | MEDLINE | ID: mdl-38615444

ABSTRACT

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Subject(s)
Photosynthesis , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Magnetic Iron Oxide Nanoparticles , Chlorophyll/metabolism , Minerals/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Ferric Compounds
19.
J Mater Chem B ; 12(20): 4833-4842, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647018

ABSTRACT

Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.


Subject(s)
Brain Neoplasms , Contrast Media , Glioblastoma , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Animals , Mice , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Contrast Media/chemistry , Mice, Nude , Particle Size , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Mice, Inbred BALB C
20.
Chemosphere ; 358: 142060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648981

ABSTRACT

The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3- and IONS-PG-COO- were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.


Subject(s)
Caenorhabditis elegans , Glycerol , Polymers , Caenorhabditis elegans/drug effects , Animals , Glycerol/chemistry , Glycerol/toxicity , Polymers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/toxicity , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...