Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.154
Filter
1.
Echocardiography ; 41(6): e15849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837443

ABSTRACT

Heart failure (HF) is a chronic and progressive disease that often progresses to an advanced stage where conventional therapy is insufficient to relieve patients' symptoms. Despite the availability of advanced therapies such as mechanical circulatory support or heart transplantation, the complexity of defining advanced HF, which requires multiple parameters and multimodality assessment, often leads to delays in referral to dedicated specialists with the result of a worsening prognosis. In this review, we aim to explore the role of cardiac magnetic resonance (CMR) in advanced HF by showing how CMR is useful at every step in managing these patients: from diagnosis to prognostic stratification, hemodynamic evaluation, follow-up and advanced therapies such as heart transplantation. The technical challenges of scanning advanced HF patients, which often require troubleshooting of intracardiac devices and dedicated scans, will be also discussed.


Subject(s)
Heart Failure , Humans , Heart Failure/physiopathology , Heart Failure/diagnosis , Magnetic Resonance Imaging, Cine/methods
2.
BMC Med Imaging ; 24(1): 131, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840059

ABSTRACT

PURPOSE: To evaluate the intracavity left ventricular (LV) blood flow kinetic energy (KE) parameters using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). METHODS: Thirty AMI patients and twenty controls were examined via CMR, which included cine imaging, late gadolinium enhancement (LGE) and global heart 4D flow imaging. The KE parameters were indexed to LV end-diastolic volume (EDV) to obtain average, systolic and diastolic KE as well as the proportion of LV in-plane KE (%). These parameters were compared between the AMI patients and controls and between the two subgroups. RESULTS: Analysis of the LV blood flow KE parameters at different levels of the LV cavity and in different segments of the same level showed that the basal level had the highest blood flow KE while the apical level had the lowest in the control group. There were no significant differences in diastolic KE, systolic in-plane KE and diastolic in-plane KE between the anterior wall and posterior wall (p > 0.05), only the systolic KE had a significant difference between them (p < 0.05). Compared with those in the control group, the average (10.7 ± 3.3 µJ/mL vs. 14.7 ± 3.6 µJ/mL, p < 0.001), systolic (14.6 ± 5.1 µJ/mL vs. 18.9 ± 3.9 µJ/mL, p = 0.003) and diastolic KE (7.9 ± 2.5 µJ/mL vs. 10.6 ± 3.8 µJ/mL, p = 0.018) were significantly lower in the AMI group. The average KE in the infarct segment was lower than that in the noninfarct segment in the AMI group (49.5 ± 18.7 µJ/mL vs. 126.3 ± 50.7 µJ/mL, p < 0.001), while the proportion of systolic in-plane KE increased significantly (61.8%±11.5 vs. 42.9%±14.4, p = 0.001). CONCLUSION: The 4D Flow MRI technique can be used to quantitatively evaluate LV regional hemodynamic parameters. There were differences in the KE parameters of LV blood flow at different levels and in different segments of the same level in healthy people. In AMI patients, the average KE of the infarct segment decreased, while the proportion of systolic in-plane KE significantly increased.


Subject(s)
Heart Ventricles , Myocardial Infarction , Humans , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Male , Female , Middle Aged , Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Case-Control Studies , Magnetic Resonance Imaging, Cine/methods , Blood Flow Velocity , Adult
3.
Heart Fail Clin ; 20(3): 295-305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844300

ABSTRACT

Cardiac magnetic resonance represents the gold standard imaging technique to assess cardiac volumes, wall thickness, mass, and systolic function but also to provide noninvasive myocardial tissue characterization across almost all cardiac diseases. In patients with cardiac amyloidosis, increased wall thickness of all heart chambers, a mildly reduced ejection fraction and occasionally pleural and pericardial effusion are the characteristic morphologic anomalies. The typical pattern after contrast injection is represented by diffuse areas of late gadolinium enhancement, which can be focal and patchy in very early stages, circumferential, and subendocardial in intermediate stages or even diffuse transmural in more advanced stages.


Subject(s)
Amyloidosis , Cardiomyopathies , Humans , Amyloidosis/diagnostic imaging , Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Contrast Media , Magnetic Resonance Imaging/methods , Myocardium/pathology , Stroke Volume/physiology
4.
Radiol Cardiothorac Imaging ; 6(3): e230252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842454

ABSTRACT

Purpose To assess the correlation between noninvasive cardiac MRI-derived parameters with pressure-volume (PV) loop data and evaluate changes in left ventricular function after myocardial infarction (MI). Materials and Methods Sixteen adult female swine were induced with MI, with six swine used as controls and 10 receiving platelet-derived growth factor-AB (PDGF-AB). Load-independent measures of cardiac function, including slopes of end-systolic pressure-volume relationship (ESPVR) and preload recruitable stroke work (PRSW), were obtained on day 28 after MI. Cardiac MRI was performed on day 2 and day 28 after infarct. Global longitudinal strain (GLS) and global circumferential strain (GCS) were measured. Ventriculo-arterial coupling (VAC) was derived from PV loop and cardiac MRI data. Pearson correlation analysis was performed. Results GCS (r = 0.60, P = .01), left ventricular ejection fraction (LVEF) (r = 0.60, P = .01), and cardiac MRI-derived VAC (r = 0.61, P = .01) had a significant linear relationship with ESPVR. GCS (r = 0.75, P < .001) had the strongest significant linear relationship with PRSW, followed by LVEF (r = 0.67, P = .005) and cardiac MRI-derived VAC (r = 0.60, P = .01). GLS was not significantly correlated with ESPVR or PRSW. There was a linear correlation (r = 0.82, P < .001) between VAC derived from cardiac MRI and from PV loop data. GCS (-3.5% ± 2.3 vs 0.5% ± 1.4, P = .007) and cardiac MRI-derived VAC (-0.6 ± 0.6 vs 0.3 ± 0.3, P = .001) significantly improved in the animals treated with PDGF-AB 28 days after MI compared with controls. Conclusion Cardiac MRI-derived parameters of MI correlated with invasive PV measures, with GCS showing the strongest correlation. Cardiac MRI-derived measures also demonstrated utility in assessing therapeutic benefit using PDGF-AB. Keywords: Cardiac MRI, Myocardial Infarction, Pressure Volume Loop, Strain Imaging, Ventriculo-arterial Coupling Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Disease Models, Animal , Myocardial Infarction , Animals , Female , Swine , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Magnetic Resonance Imaging/methods , Ventricular Function, Left/physiology , Stroke Volume/physiology , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods
5.
Radiol Cardiothorac Imaging ; 6(3): e230292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842456

ABSTRACT

Purpose To demonstrate the myocardial strain characteristics of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), based on revised Task Force Criteria (rTFC), and to explore the prognostic value of strain analysis in ARVC. Materials and Methods This retrospective study included 247 patients (median age, 38 years [IQR, 28-48 years]; 167 male, 80 female) diagnosed with ARVC, based on rTFC, between 2014 and 2018. Patients were divided into "possible" (n =25), "borderline" (n = 40), and "definite" (n = 182) ARVC groups following rTFC. Biventricular global strain parameters were calculated using cardiac MRI feature tracking (FT). The primary outcome was defined as a composite of cardiovascular events, including cardiovascular death, heart transplantation, and appropriate implantable cardioverter defibrillator discharge. Univariable and multivariable cumulative logistic regression and Cox proportional hazards regression analysis were used to evaluate the diagnostic and prognostic value of right ventricle (RV) strain parameters. Results Patients with definite ARVC had significantly reduced RV global strain in all three directions compared with possible or borderline groups (all P < .001). RV global longitudinal strain (GLS) was an independent predictor for disease (odds ratio, 1.09 [95% CI: 1.02, 1.16]; P = .009). During a median follow-up of 3.4 years (IQR, 2.0-4.9 years), 55 patients developed primary end point events. Multivariable analysis showed that RV GLS was independently associated with the occurrence of cardiovascular events (hazard ratio, 1.15 [95% CI: 1.07, 1.24]; P < .001). Kaplan-Meier analysis showed that patients with RV GLS worse than median had a higher risk of combined cardiovascular events (log-rank P < .001). Conclusion RV GLS derived from cardiac MRI FT demonstrated good diagnostic and prognostic value in ARVC. Keywords: MR Imaging, Image Postprocessing, Cardiac, Right Ventricle, Cardiomyopathies, Arrhythmogenic Right Ventricular Cardiomyopathy, Revised Task Force Criteria, Cardiovascular MR, Feature Tracking, Cardiovascular Events Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Heart Ventricles , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Male , Female , Middle Aged , Adult , Retrospective Studies , Prognosis , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Imaging , Ventricular Function, Right/physiology
7.
BMC Cardiovasc Disord ; 24(1): 284, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816798

ABSTRACT

INTRODUCTION: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an infrequent hereditary disorder distinguished by fibrofatty replacement of the myocardium in the right ventricular, which predisposes individuals to life-threatening arrhythmias. This case delineates an ARVC patient who suffered recurrent bouts of sustained ventricular tachycardia (VT). In this case, we mainly discuss the application of myocardial contrast echocardiography (MCE) in displaying myocardial fibrosis in patients with ARVC. CASE PRESENTATION: A 43-year-old male experienced three episodes of unexplained VT over an eight-year period, accompanied by symptoms of chest discomfort, palpitations and dizziness. Coronary angiography revealed no significant coronary stenosis. The electrocardiogram (ECG) results indicated characteristic epsilon waves in right precordial leads, and subsequent echocardiography identified right ventricular enlargement and right ventricular systolic dysfunction. MCE further disclosed regional myocardial ischemia at the epicardium of the left ventricular apex. Ultimately, cardiovascular magnetic resonance imaging (CMR) corroborated the ARVC diagnosis, highlighting linear intensification in the right ventricle during the delayed enhancement. CONCLUSION: Prompt identification of ARVC is crucial for timely intervention and management. MCE may offer an effective and valuable technique for the detection of myocardial involvement in ARVC patient.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Electrocardiography , Tachycardia, Ventricular , Humans , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/therapy , Male , Adult , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/etiology , Predictive Value of Tests , Ventricular Function, Right , Fibrosis , Echocardiography , Myocardium/pathology , Heart Rate , Magnetic Resonance Imaging, Cine
8.
Radiol Cardiothorac Imaging ; 6(3): e230177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722232

ABSTRACT

Purpose To develop a deep learning model for increasing cardiac cine frame rate while maintaining spatial resolution and scan time. Materials and Methods A transformer-based model was trained and tested on a retrospective sample of cine images from 5840 patients (mean age, 55 years ± 19 [SD]; 3527 male patients) referred for clinical cardiac MRI from 2003 to 2021 at nine centers; images were acquired using 1.5- and 3-T scanners from three vendors. Data from three centers were used for training and testing (4:1 ratio). The remaining data were used for external testing. Cines with downsampled frame rates were restored using linear, bicubic, and model-based interpolation. The root mean square error between interpolated and original cine images was modeled using ordinary least squares regression. In a prospective study of 49 participants referred for clinical cardiac MRI (mean age, 56 years ± 13; 25 male participants) and 12 healthy participants (mean age, 51 years ± 16; eight male participants), the model was applied to cines acquired at 25 frames per second (fps), thereby doubling the frame rate, and these interpolated cines were compared with actual 50-fps cines. The preference of two readers based on perceived temporal smoothness and image quality was evaluated using a noninferiority margin of 10%. Results The model generated artifact-free interpolated images. Ordinary least squares regression analysis accounting for vendor and field strength showed lower error (P < .001) with model-based interpolation compared with linear and bicubic interpolation in internal and external test sets. The highest proportion of reader choices was "no preference" (84 of 122) between actual and interpolated 50-fps cines. The 90% CI for the difference between reader proportions favoring collected (15 of 122) and interpolated (23 of 122) high-frame-rate cines was -0.01 to 0.14, indicating noninferiority. Conclusion A transformer-based deep learning model increased cardiac cine frame rates while preserving both spatial resolution and scan time, resulting in images with quality comparable to that of images obtained at actual high frame rates. Keywords: Functional MRI, Heart, Cardiac, Deep Learning, High Frame Rate Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Deep Learning , Magnetic Resonance Imaging, Cine , Humans , Male , Magnetic Resonance Imaging, Cine/methods , Middle Aged , Female , Prospective Studies , Retrospective Studies , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
9.
Curr Probl Cardiol ; 49(7): 102630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723796

ABSTRACT

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a hereditary condition with a prevalence ranging from 1 in 2000 to 1 in 5000 individuals. ARVC is a significant contributor to sudden cardiac death, particularly in young individuals and athletes, and remains challenging to diagnose definitively. We conducted a single-center retrospective study to evaluate the presentations, electrocardiogram findings, and imaging characteristics of ARVC patients evaluated at our center between 2021 and 2023. Notably, our study is the second investigation of ARVC conducted in Pakistan. We report divergent symptom prevalence as compared to the current literature and have incorporated the Task Force Criteria. Despite limited access to cardiac magnetic resonance (CMR) facilities worldwide, our findings underscore the critical role ofCMR in ARVC diagnosis. Our cohort had a mortality rate of 17 % highlighting the importance of early detection and the need for improved diagnostic facilities for ARVC in the region.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Electrocardiography , Magnetic Resonance Imaging, Cine , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Retrospective Studies , Male , Female , Adult , Magnetic Resonance Imaging, Cine/methods , Prognosis , Pakistan/epidemiology , Middle Aged , Young Adult , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Prevalence , Adolescent
10.
J Am Coll Cardiol ; 83(19): 1841-1851, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38719365

ABSTRACT

BACKGROUND: Nondilated left ventricular cardiomyopathy (NDLVC) has been recently differentiated from dilated cardiomyopathy (DCM). A comprehensive characterization of these 2 entities using cardiac magnetic resonance (CMR) and genetic testing has never been performed. OBJECTIVES: This study sought to provide a thorough characterization and assess clinical outcomes in a large multicenter cohort of patients with DCM and NDLVC. METHODS: A total of 462 patients with DCM (227) or NDLVC (235) with CMR data from 4 different referral centers were retrospectively analyzed. The study endpoint was a composite of sudden cardiac death or major ventricular arrhythmias. RESULTS: In comparison to DCM, NDLVC had a higher prevalence of pathogenic or likely pathogenic variants of arrhythmogenic genes (40% vs 23%; P < 0.001), higher left ventricular (LV) systolic function (LV ejection fraction: 51% ± 12% vs 36% ± 15%; P < 0.001) and higher prevalence of free-wall late gadolinium enhancement (LGE) (27% vs 14%; P < 0.001). Conversely, DCM showed higher prevalence of pathogenic or likely pathogenic variants of nonarrhythmogenic genes (23% vs 12%; P = 0.002) and septal LGE (45% vs 32%; P = 0.004). Over a median follow-up of 81 months (Q1-Q3: 40-132 months), the study outcome occurred in 98 (21%) patients. LGE with septal location (HR: 1.929; 95% CI: 1.033-3.601; P = 0.039) was independently associated with the risk of sudden cardiac death or major ventricular arrhythmias together with LV dilatation, older age, advanced NYHA functional class, frequent ventricular ectopic activity, and nonsustained ventricular tachycardia. CONCLUSIONS: In a multicenter cohort of patients with DCM and NDLVC, septal LGE together with LV dilatation, age, advanced disease, and frequent and repetitive ventricular arrhythmias were powerful predictors of major arrhythmic events.


Subject(s)
Cardiomyopathy, Dilated , Magnetic Resonance Imaging, Cine , Humans , Male , Female , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/physiopathology , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Follow-Up Studies
11.
Radiol Cardiothorac Imaging ; 6(3): e230281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695743

ABSTRACT

Purpose To describe the clinical presentation, comprehensive cardiac MRI characteristics, and prognosis of individuals with predisposed heart failure with preserved ejection fraction (HFpEF). Materials and Methods This prospective cohort study (part of MISSION-HFpEF [Multimodality Imaging in the Screening, Diagnosis, and Risk Stratification of HFpEF]; NCT04603404) was conducted from January 1, 2019, to September 30, 2021, and included individuals with suspected HFpEF who underwent cardiac MRI. Participants who had primary cardiomyopathy and primary valvular heart disease were excluded. Participants were split into a predisposed HFpEF group, defined as HFpEF with normal natriuretic peptide levels based on an HFA-PEFF (Heart Failure Association Pretest Assessment, Echocardiography and Natriuretic Peptide, Functional Testing, and Final Etiology) score of 4 from the latest European Society of Cardiology guidelines, and an HFpEF group (HFA-PEFF score of ≥ 5). An asymptomatic control group without heart failure was also included. Clinical and cardiac MRI-based characteristics and outcomes were compared between groups. The primary end points were death, heart failure hospitalization, or stroke. Results A total of 213 participants with HFpEF, 151 participants with predisposed HFpEF, and 100 participants in the control group were analyzed. Compared with the control group, participants with predisposed HFpEF had worse left ventricular remodeling and function and higher systemic inflammation. Compared with participants with HFpEF, those with predisposed HFpEF, whether obese or not, were younger and had higher plasma volume, lower prevalence of atrial fibrillation, lower left atrial volume index, and less impaired left ventricular global longitudinal strain (-12.2% ± 2.8 vs -13.9% ± 3.1; P < .001) and early-diastolic global longitudinal strain rate (eGLSR, 0.52/sec ± 0.20 vs 0.57/sec ± 0.15; P = .03) but similar prognosis. Atrial fibrillation occurrence (hazard ratio [HR] = 3.90; P = .009), hemoglobin level (HR = 0.94; P = .001), and eGLSR (per 0.2-per-second increase, HR = 0.28; P = .002) were independently associated with occurrence of primary end points in participants with predisposed HFpEF. Conclusion Participants with predisposed HFpEF showed relatively unique clinical and cardiac MRI features, warranting greater clinical attention. eGLSR should be considered as a prognostic factor in participants with predisposed HFpEF. Keywords: Heart Failure with Preserved Ejection Fraction, Normal Natriuretic Peptide Levels, Cardiovascular Magnetic Resonance, Myocardial Strain, Prognosis Clinical trial registration no. NCT04603404 Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Heart Failure , Natriuretic Peptides , Stroke Volume , Aged , Female , Humans , Male , Middle Aged , Heart Failure/physiopathology , Heart Failure/diagnostic imaging , Heart Failure/blood , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Natriuretic Peptides/blood , Prognosis , Prospective Studies , Stroke Volume/physiology
12.
Int J Cardiol ; 409: 132189, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761974

ABSTRACT

AIMS: Hepatic T1-time derived from cardiac magnetic resonance imaging (cMRI) reflects venous congestion and may provide a simple alternative to invasive end-diastolic elastance (Eed) for assessment of right ventricular (RV) diastolic function. We investigated the association of native hepatic T1-time with single-beat Eed and the value of hepatic T1-time for longitudinal monitoring in pulmonary hypertension (PH). METHODS AND RESULTS: We retrospectively enrolled 85 patients with suspected PH (59% female; 78 with PH diagnosed; 7 with PH excluded) who underwent standard right heart catheterization and cMRI within 24 h between 2015 and 2020. Hepatic T1-time showed moderate to strong correlations (rho >0.3, P ≤ 0.002) with pulmonary vascular resistance, native myocardial T1-time, Eed, RV size and function, brain natriuretic peptide (BNP) level, and 6-min walk distance, and a significant association with functional class (Kruskal-Wallis P < 0.001). Eed, myocardial T1-time, and BNP were independently linked to hepatic T1-time in multivariable regression. Hepatic T1-time > 598 ms predicted elevated Eed with 72.9% sensitivity and 82.1% specificity. Hepatic T1-time was superior to Eed in predicting clinical worsening. In 16 patients with follow-up assessments, those with decreasing hepatic T1-time (7 patients) showed significant hemodynamic improvements, whereas those with increasing hepatic T1-time (9 patients) did not. In a second retrospective cohort of 27 patients with chronic thromboembolic PH undergoing balloon pulmonary angioplasty, hepatic T1-time decreased significantly and hemodynamics improved after the procedure. CONCLUSIONS: Hepatic T1-time predicts RV diastolic dysfunction and prognosis, and may be useful for monitoring disease progression and treatment response in PH.


Subject(s)
Disease Progression , Hypertension, Pulmonary , Humans , Female , Male , Retrospective Studies , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Middle Aged , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/diagnostic imaging , Aged , Adult , Liver/diagnostic imaging , Liver/physiopathology , Treatment Outcome , Diastole
13.
Arch Cardiovasc Dis ; 117(6-7): 433-440, 2024.
Article in English | MEDLINE | ID: mdl-38797639

ABSTRACT

BACKGROUND: Acute myocarditis usually presents as chest pain with rising troponin and normal coronary arteries. Despite frequent favourable evolution at the acute phase, it is associated with heart failure and ventricular rhythm disorders, and is considered the leading cause of sudden cardiac death in young, apparently healthy, adults. There are no specific recommendations for acute myocarditis diagnosis and management, only expert consensus, given the lack of large databases. AIM: The main objective is to describe the contemporary presentation of acute myocarditis, its management and in-hospital outcomes. Secondary objectives are to investigate survival and event-free survival for up to 10years of follow-up, the determinants of prognosis, the modalities of treatment and follow-up and the gaps between expert consensus and real-life management. METHODS: MyocarditIRM is a prospective multicentre cohort that enrolled 803 consecutive patients with acute myocarditis in 49 participating centres in France between 01 May 2016 and 28 February 2019. The diagnosis of acute myocarditis was acknowledged by cardiac magnetic resonance, using the Lake Louise Criteria. Exclusion criteria were age<18years, lack of health coverage, contraindication to cardiac magnetic resonance and refusal to participate. Detailed information was collected prospectively, starting at admission. Cardiac magnetic resonance imaging (diagnosis and follow-up) is analysed centrally by the certified core laboratory IHU ICAN. Ten years of follow-up for each patient is ensured by linking with the French National Health Database, and includes information on death, hospital admissions, major clinical events and drug consumption. CONCLUSION: This prospective cohort with long-term follow-up represents the largest database on acute myocarditis worldwide, and will improve knowledge about its presentation, management and outcomes.


Subject(s)
Myocarditis , Predictive Value of Tests , Humans , Myocarditis/diagnostic imaging , Myocarditis/therapy , Myocarditis/mortality , Myocarditis/diagnosis , France , Acute Disease , Prospective Studies , Time Factors , Adult , Male , Female , Research Design , Prognosis , Risk Factors , Magnetic Resonance Imaging , Middle Aged , Treatment Outcome , Young Adult , Hospital Mortality , Magnetic Resonance Imaging, Cine
14.
Heart ; 110(13): 887-891, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38816063

ABSTRACT

OBJECTIVE: Marfan syndrome (MFS)-associated cardiomyopathy, defined as ventricular dilation and dysfunction unexplained by volume loading, is not well defined in children. This study evaluated ventricular size and function in paediatric MFS using cardiac MRI (cMRI). METHODS: This retrospective cohort study examined patients with MFS <19 years old at first cMRI. Left ventricular (LV) ejection fraction (EF) <55% was considered abnormal, as were z-scores >2. Combined mitral and aortic regurgitation indexed to LV stroke volume <20% defined absent/mild volume load. Biventricular volumes and EF on serial cMRI studies were compared with normative paediatric cMRI values, with measures converted to z-scores as appropriate. Longitudinal changes in volumes and EF were evaluated by mixed linear regression. Associations between ventricular, aortic and mitral characteristics were evaluated. RESULTS: 58 patients (60% male) were evaluated. Median age at initial cMRI was 13.6 years (IQR 10.0-15.8 years). Among patients with absent/mild LV volume load at initial cMRI (n=44, 76%), indexed LV end-diastolic volume (EDV) was significantly increased above normative values (median z-score 1.8, IQR 0.6-3.5, p<0.0001) and LVEF was abnormal in 48% (21/44). In the absence of volume loading, mitral valve prolapse (MVP) was associated with larger ventricular volumes and lower LVEF. Among those with serial cMRIs, LVEF and EDV z-scores did not significantly change over a mean follow-up time between cMRI studies of 1.5 years. CONCLUSION: Ventricular dilation and reduced EF are common in children with MFS and occur with no/mild LV volume load, suggesting intrinsic cardiomyopathy. MVP may be associated with cardiomyopathy.


Subject(s)
Marfan Syndrome , Stroke Volume , Ventricular Function, Left , Humans , Marfan Syndrome/complications , Marfan Syndrome/physiopathology , Marfan Syndrome/diagnosis , Male , Female , Retrospective Studies , Child , Adolescent , Stroke Volume/physiology , Ventricular Function, Left/physiology , Magnetic Resonance Imaging, Cine/methods , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Cardiomyopathies/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging
15.
Sci Rep ; 14(1): 11658, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778036

ABSTRACT

Clinical application of cardiac magnetic resonance (CMR) is expanding but CMR assessment of LV diastolic function is still being validated. The purpose of this study was to validate assessments of left ventricular (LV) diastolic dysfunction (DD) using CMR by comparing with transthoracic echocardiography (TTE) performed on the same day. Patients with suspected or diagnosed cardiomyopathy (n = 63) and healthy volunteers (n = 24) were prospectively recruited and included in the study. CMR diastolic parameters were measured on cine images and velocity-encoded phase contrast cine images and compared with corresponding parameters measured on TTE. A contextual correlation feature tracking method was developed to calculate the mitral annular velocity curve. LV DD was classified by CMR and TTE following 2016 guidelines. Overall DD classification was 78.1% concordant between CMR and TTE (p < 0.0001). The trans-mitral inflow parameters correlated well between the two modalities (E, r = 0.78; A, r = 0.90; E/A, r = 0.82; all p < 0.0001) while the remaining diastolic parameters showed moderate correlation (e', r = 0.64; E/e', r = 0.54; left atrial volume index (LAVi), r = 0.61; all p < 0.0001). Classification of LV diastolic function by CMR showed good concordance with standardized grades established for TTE. CMR-based LV diastolic function may be integrated in routine clinical practice.Name of the registry: Technical Development of Cardiovascular Magnetic Resonance Imaging. Trial registration number: NCT00027170. Date of registration: November 26, 2001. URL of trial registry record: https://clinicaltrials.gov/ct2/show/NCT00027170.


Subject(s)
Diastole , Echocardiography , Magnetic Resonance Imaging, Cine , Adult , Aged , Female , Humans , Male , Middle Aged , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology , Diastole/physiology , Echocardiography/methods , Magnetic Resonance Imaging, Cine/methods , Prospective Studies , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left/physiology
16.
Open Heart ; 11(1)2024 May 28.
Article in English | MEDLINE | ID: mdl-38806222

ABSTRACT

OBJECTIVE: This study aims to compare aortic morphology between repaired coarctation patients and controls, and to identify aortic morphological risk factors for hypertension and cardiovascular events (CVEs) in coarctation patients. METHODS: Repaired coarctation patients with computed tomography angiography (CTA) or magnetic resonance angiography (MRA) were included, followed-up and compared with sex-matched and age-matched controls. Three-dimensional aortic shape was reconstructed using patients' CTA or MRA, or four-dimensional flow cardiovascular magnetic resonance in controls, and advanced geometrical characteristics were calculated and visualised using statistical shape modelling. In patients, we examined the association of geometrical characteristics with (1) baseline hypertension, using multivariable logistic regression; and (2) cardiovascular events (CVE, composite of aortic complications, coronary artery disease, ventricular arrhythmias, heart failure hospitalisation, stroke, transient ischaemic attacks and cardiovascular death), using multivariable Cox regression. The least absolute shrinkage and selection operator (LASSO) method selected the most informative multivariable model. RESULTS: Sixty-five repaired coarctation patients (23 years (IQR 19-38)) were included, of which 44 (68%) patients were hypertensive at baseline. After a median follow-up of 8.7 years (IQR 4.8-15.4), 27 CVEs occurred in 20 patients. Aortic arch dimensions were smaller in patients compared with controls (diameter p<0.001, wall surface area p=0.026, volume p=0.007). Patients had more aortic arch torsion (p<0.001) and a higher curvature (p<0.001). No geometrical characteristics were associated with hypertension. LASSO selected left ventricular mass, male sex, tortuosity and age for the multivariable model. Left ventricular mass (p=0.014) was independently associated with CVE, and aortic tortuosity showed a trend towards significance (p=0.070). CONCLUSION: Repaired coarctation patients have a smaller aortic arch and a more tortuous course of the aorta compared with controls. Besides left ventricular mass index, geometrical features might be of importance in long-term risk assessment in coarctation patients.


Subject(s)
Aortic Coarctation , Computed Tomography Angiography , Magnetic Resonance Angiography , Humans , Aortic Coarctation/surgery , Aortic Coarctation/complications , Aortic Coarctation/diagnostic imaging , Male , Female , Computed Tomography Angiography/methods , Adult , Risk Factors , Young Adult , Follow-Up Studies , Time Factors , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Risk Assessment/methods , Treatment Outcome , Hypertension/complications , Hypertension/physiopathology , Adolescent
17.
Int J Cardiol ; 408: 132135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705206

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) extracellular volume (ECV) allows non-invasive detection of myocardial interstitial fibrosis, which may be related to diastolic dysfunction and left atrial (LA) remodeling in hypertrophic cardiomyopathy (HCM). While the prognostic role of LGE is well-established, interstitial fibrosis and LA dysfunction are emerging novel markers in HCM. This study aimed to explore the interaction between interstitial fibrosis by ECV, LA morpho-functional parameters and adverse clinical outcomes in selected low-risk patients with HCM. METHODS: 115 HCM patients and 61 matched controls underwent CMR to identify: i) interstitial fibrosis by ECV in hypertrophied left ventricular LGE-negative remote myocardium (r-ECV); ii) LA indexed maximum (LAVi max) and minimum (LAVi min) volumes, ejection fraction (LA-EF) and strain (reservoir εs, conduit εe and booster εa), by CMR feature-tracking. 2D-echocardiographic assessment of diastolic function was also performed within 6 months from CMR. A composite endpoint including worsening NYHA class, heart failure hospitalization, atrial fibrillation and all-cause death was evaluated at 2.3 years follow-up. HCM patients were divided into two groups, according to r-ECV values of controls. RESULTS: Patients with r-ECV ≥29% (n = 45) showed larger LA volumes (LAVimax 63 vs. 54 ml/m2, p < 0.001; LAVimin 43 vs. 28 ml/m2, p ã€ˆ0001), worse LA function (εs 16 vs. 28%, εe 8 vs. 15%, εa 8 vs. 14%, LA-EF 33 vs. 49%, all p < 0.001) and elevated Nt-proBNP (1115 vs. 382 pg/ml, p = 0.002). LA functional parameters inversely correlated with r-ECV (εs r = -0.54; LA-EF r = -0.46; all p < 0.001) and E/e' (εs r = -0.52, LA-EF r = -0.46; all p < 0.006). r-ECV ≥29% and LAVi min >30 ml/m2 have been identified as possible independent factors associated with the endpoint. CONCLUSIONS: In HCM diffuse interstitial fibrosis detected by increased r-ECV is associated with LA remodeling and emerged as a potential independent predictor of adverse clinical outcomes, on top of the well-known prognostic impact of LGE.


Subject(s)
Atrial Remodeling , Cardiomyopathy, Hypertrophic , Fibrosis , Magnetic Resonance Imaging, Cine , Humans , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Male , Female , Middle Aged , Atrial Remodeling/physiology , Magnetic Resonance Imaging, Cine/methods , Adult , Follow-Up Studies , Risk Factors , Aged , Atrial Function, Left/physiology
18.
Med Eng Phys ; 127: 104162, 2024 May.
Article in English | MEDLINE | ID: mdl-38692762

ABSTRACT

OBJECTIVE: Early detection of cardiovascular diseases is based on accurate quantification of the left ventricle (LV) function parameters. In this paper, we propose a fully automatic framework for LV volume and mass quantification from 2D-cine MR images already segmented using U-Net. METHODS: The general framework consists of three main steps: Data preparation including automatic LV localization using a convolution neural network (CNN) and application of morphological operations to exclude papillary muscles from the LV cavity. The second step consists in automatically extracting the LV contours using U-Net architecture. Finally, by integrating temporal information which is manifested by a spatial motion of myocytes as a third dimension, we calculated LV volume, LV ejection fraction (LVEF) and left ventricle mass (LVM). Based on these parameters, we detected and quantified cardiac contraction abnormalities using Python software. RESULTS: CNN was trained with 35 patients and tested on 15 patients from the ACDC database with an accuracy of 99,15 %. U-Net architecture was trained using ACDC database and evaluated using local dataset with a Dice similarity coefficient (DSC) of 99,78 % and a Hausdorff Distance (HD) of 4.468 mm (p < 0,001). Quantification results showed a strong correlation with physiological measures with a Pearson correlation coefficient (PCC) of 0,991 for LV volume, 0.962 for LVEF, 0.98 for stroke volume (SV) and 0.923 for LVM after pillars' elimination. Clinically, our method allows regional and accurate identification of pathological myocardial segments and can serve as a diagnostic aid tool of cardiac contraction abnormalities. CONCLUSION: Experimental results prove the usefulness of the proposed method for LV volume and function quantification and verify its potential clinical applicability.


Subject(s)
Automation , Heart Ventricles , Image Processing, Computer-Assisted , Magnetic Resonance Imaging, Cine , Papillary Muscles , Humans , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Papillary Muscles/diagnostic imaging , Papillary Muscles/physiology , Image Processing, Computer-Assisted/methods , Organ Size , Male , Middle Aged , Neural Networks, Computer , Female , Stroke Volume
19.
Sci Rep ; 14(1): 11774, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783018

ABSTRACT

To develop and assess a deep learning (DL) pipeline to learn dynamic MR image reconstruction from publicly available natural videos (Inter4K). Learning was performed for a range of DL architectures (VarNet, 3D UNet, FastDVDNet) and corresponding sampling patterns (Cartesian, radial, spiral) either from true multi-coil cardiac MR data (N = 692) or from synthetic MR data simulated from Inter4K natural videos (N = 588). Real-time undersampled dynamic MR images were reconstructed using DL networks trained with cardiac data and natural videos, and compressed sensing (CS). Differences were assessed in simulations (N = 104 datasets) in terms of MSE, PSNR, and SSIM and prospectively for cardiac cine (short axis, four chambers, N = 20) and speech cine (N = 10) data in terms of subjective image quality ranking, SNR and Edge sharpness. Friedman Chi Square tests with post-hoc Nemenyi analysis were performed to assess statistical significance. In simulated data, DL networks trained with cardiac data outperformed DL networks trained with natural videos, both of which outperformed CS (p < 0.05). However, in prospective experiments DL reconstructions using both training datasets were ranked similarly (and higher than CS) and presented no statistical differences in SNR and Edge Sharpness for most conditions.The developed pipeline enabled learning dynamic MR reconstruction from natural videos preserving DL reconstruction advantages such as high quality fast and ultra-fast reconstructions while overcoming some limitations (data scarcity or sharing). The natural video dataset, code and pre-trained networks are made readily available on github.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Video Recording/methods , Magnetic Resonance Imaging, Cine/methods
20.
Nat Med ; 30(5): 1471-1480, 2024 May.
Article in English | MEDLINE | ID: mdl-38740996

ABSTRACT

Cardiac magnetic resonance imaging (CMR) is the gold standard for cardiac function assessment and plays a crucial role in diagnosing cardiovascular disease (CVD). However, its widespread application has been limited by the heavy resource burden of CMR interpretation. Here, to address this challenge, we developed and validated computerized CMR interpretation for screening and diagnosis of 11 types of CVD in 9,719 patients. We propose a two-stage paradigm consisting of noninvasive cine-based CVD screening followed by cine and late gadolinium enhancement-based diagnosis. The screening and diagnostic models achieved high performance (area under the curve of 0.988 ± 0.3% and 0.991 ± 0.0%, respectively) in both internal and external datasets. Furthermore, the diagnostic model outperformed cardiologists in diagnosing pulmonary arterial hypertension, demonstrating the ability of artificial intelligence-enabled CMR to detect previously unidentified CMR features. This proof-of-concept study holds the potential to substantially advance the efficiency and scalability of CMR interpretation, thereby improving CVD screening and diagnosis.


Subject(s)
Artificial Intelligence , Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/diagnosis , Female , Male , Middle Aged , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Mass Screening/methods , Aged , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...