Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136.384
Filter
1.
Eur Radiol Exp ; 8(1): 66, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834751

ABSTRACT

BACKGROUND: Quantitative techniques such as T2 and T1ρ mapping allow evaluating the cartilage and meniscus. We evaluated multi-interleaved X-prepared turbo-spin echo with intuitive relaxometry (MIXTURE) sequences with turbo spin-echo (TSE) contrast and additional parameter maps versus reference TSE sequences in an in situ model of human cartilage defects. METHODS: Standardized cartilage defects of 8, 5, and 3 mm in diameter were created in the lateral femora of ten human cadaveric knee specimens (81 ± 10 years old; nine males, one female). MIXTURE sequences providing proton density-weighted fat-saturated images and T2 maps or T1-weighted images and T1ρ maps as well as the corresponding two- and three-dimensional TSE reference sequences were acquired before and after defect creation (3-T scanner; knee coil). Defect delineability, bone texture, and cartilage relaxation times were quantified. Appropriate parametric or non-parametric tests were used. RESULTS: Overall, defect delineability and texture features were not significantly different between the MIXTURE and reference sequences (p ≤ 0.47). After defect creation, relaxation times significantly increased in the central femur (T2pre = 51 ± 4 ms [mean ± standard deviation] versus T2post = 56 ± 4 ms; p = 0.002) and all regions combined (T1ρpre = 40 ± 4 ms versus T1ρpost = 43 ± 4 ms; p = 0.004). CONCLUSIONS: MIXTURE permitted time-efficient simultaneous morphologic and quantitative joint assessment based on clinical image contrasts. While providing T2 or T1ρ maps in clinically feasible scan time, morphologic image features, i.e., cartilage defects and bone texture, were comparable between MIXTURE and reference sequences. RELEVANCE STATEMENT: Equally time-efficient and versatile, the MIXTURE sequence platform combines morphologic imaging using familiar contrasts, excellent image correspondence versus corresponding reference sequences and quantitative mapping information, thereby increasing the diagnostic value beyond mere morphology. KEY POINTS: • Combined morphologic and quantitative MIXTURE sequences are based on three-dimensional TSE contrasts. • MIXTURE sequences were studied in an in situ human cartilage defect model. • Morphologic image features, i.e., defect delineabilty and bone texture, were investigated. • Morphologic image features were similar between MIXTURE and reference sequences. • MIXTURE allowed time-efficient simultaneous morphologic and quantitative knee joint assessment.


Subject(s)
Cadaver , Cartilage, Articular , Knee Joint , Magnetic Resonance Imaging , Humans , Male , Magnetic Resonance Imaging/methods , Female , Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Aged, 80 and over , Aged
2.
Zhonghua Nei Ke Za Zhi ; 63(6): 593-599, 2024 Jun 01.
Article in Chinese | MEDLINE | ID: mdl-38825928

ABSTRACT

Objective: To investigate the feasibility of 3.0 T glutamate chemical exchange saturation transfer (GluCEST) imaging in evaluating renal redox metabolism in renal ischemia-reperfusion injury (IRI). Methods: Rabbits in the IRI group (n=56) underwent surgery by clamping the left renal artery for 45 min and then releasing to establish IRI. Rabbits in the sham group (n=8) underwent the same operation without clamping the left renal artery. GluCEST MRI was performed before and at 1 h, 12 h, 1 day, 3 days, 7 days, and 14 days after the operations, with eight rabbits in the IRI group sacrificed immediately after each scanning and eight in the sham group sacrificed at 14 days after scanning. The left kidneys were removed for histopathological examination and reactive oxygen species (ROS) fluorescence staining. Differences in the magnetic resonance ratio asymmetry (MTRasym) of the renal cortex and outer medulla among different groups were compared. Correlations between the MTRasym and ROS were analyzed. Results: The MTRasym of the renal cortex in the sham and IRI subgroups were higher than that of the outer medulla (t=8.16, P<0.001; t=4.78, P=0.002; t=4.94, P=0.002; t=5.76, P=0.001, t=6.68, P<0.001; t=6.40, P<0.001; t=5.16, P=0.001; t=3.30, P=0.013). The MTRasym of the renal cortex and outer medulla in the IRI-1h, IRI-12h, IRI-1d, IRI-3d, IRI-7d, and IRI-14d groups were lower than in the sham and IRI-pre groups (all P<0.05). The MTRasym of the renal cortex and outer medulla in the IRI-1h group were lower than in the IRI-12h, IRI-1d, IRI-3d, IRI-7d, and IRI-14d groups (all P<0.05). The MTRasym of the renal cortex in the IRI-12h group was lower than in the IRI-7d and IRI-14d groups (1.84%±0.09% vs.2.42%±0.19%, 2.41%±0.31%, all P<0.05). The MTRasym of the renal cortex in the IRI-1d group was lower than in the IRI-7d group (1.99%±0.17% vs. 2.42%±0.19%, P=0.008). The MTRasym of the outer medulla in the IRI-12h group was lower than in the IRI-3d, IRI-7d, and IRI-14d groups (1.32%±0.27% vs. 1.79%±0.31%, 1.98%±0.18%, 1.66%±0.40%, respectively, all P<0.05]. The MTRasym of the outer medulla in the IRI-7d group was higher than in the IRI-1d and IRI-14d groups (1.98%±0.18% vs. 1.52%±0.31%, 1.66%±0.40%, all P<0.05). The MTRasym of the renal cortex and outer medulla had a strong negative correlation with the mean fluorescence intensity of ROS (ρ=-0.889, P<0.001; ρ=-0.784, P<0.001). Conclusion: 3.0 T GluCEST imaging can indirectly reflect the changes of renal redox metabolism in renal IRI.


Subject(s)
Kidney , Magnetic Resonance Imaging , Oxidation-Reduction , Reperfusion Injury , Animals , Rabbits , Reperfusion Injury/metabolism , Magnetic Resonance Imaging/methods , Kidney/metabolism , Kidney/diagnostic imaging , Male , Disease Models, Animal
3.
Zhonghua Yan Ke Za Zhi ; 60(6): 528-536, 2024 Jun 11.
Article in Chinese | MEDLINE | ID: mdl-38825952

ABSTRACT

Objective: To explore the changes in gray matter volume of the cerebral cortex in patients with intermittent exotropia (IXT) using the voxel-based analysis and to analyze the correlation between these changes and clinical manifestations. Methods: This was a cross-sectional study. A collection of 15 consecutive patients diagnosed with IXT at Tianjin Eye Hospital from March 2021 to May 2022 formed the exotropia group, which comprised 8 males and 7 females, with an average age of (23.5±5.2) years. Ten healthy individuals, 3 males and 7 females, with an average age of (27.0±7.5) years, were selected as the control group. All participants underwent assessments of exotropia severity and Titmus stereoacuity. Three-dimensional high-resolution brain images were obtained through MRI scans. Voxel-based morphometry was employed to preprocess the MRI data, and the SPM toolbox in MATLAB was utilized to analyze differences of images between the two groups. Regions of interest (ROI) with structural abnormalities in the gray matter volume analysis were selected, and the ratio of gray matter voxel values in the ROI to the mean gray matter voxel values of the whole brain for each participant was calculated using the MarsBaR software. The correlation between this ratio and exotropia severity as well as the common logarithm of Titmus stereoacuity was analyzed. Results: The differences in age, gender distribution, and refractive error between the two groups were not statistically significant (all P>0.05). However, there were statistically significant differences in the degree of strabismus and Titmus stereoacuity (both P<0.001). Compared to the control group, patients in the strabismus group exhibited decreased gray matter volume in several brain regions, including the wedges of the medial surface of the cerebral hemisphere (decreased by 89 voxels), the left lingual gyrus (decreased by 176 voxels), the left calcarine sulcus V3 area (decreased by 30 voxels), the central anterior gyrus of the right frontal lobe (decreased by 192 voxels), the gray matter of the left hippocampal gyrus (decreased by 20 voxels), and the bilateral lateral geniculate nuclei (decreased by 100 and 40 voxels on the left and right sides, respectively). These differences were all statistically significant (all P<0.001). Additionally, there was an increase in gray matter volume in several brain regions, including the bilateral caudate nuclei (increased by 60 and 76 voxels on the left and right sides, respectively) and the left precentral gyrus (increased by 36 voxels). These differences were also statistically significant (all P<0.001). A group-level analysis identified 10 brain regions with structural differences between the two groups, which were used as ROI. The gray matter volume ratio was negatively correlated with the degree of exotropia (all P<0.05) in the ROI of the left wedges (r=-0.670), left calcarine sulcus V3 area (r=-0.610), and left lingual gyrus (r=-0.684). The gray matter volume ratio was negatively correlated with lgTS (all P<0.05) in the ROI of the left wedges (r=-0.568) and the central anterior gyrus of the right frontal lobe (r=-0.563). Conclusions: Patients with IXT exhibit decreased gray matter volume in the horizontal connection areas between the primary visual cortices V1 and V2. The reduction in gray matter volume of the lingual gyrus and the dorsal visual pathway V3 area becomes more pronounced with increasing exotropia severity, while the gray matter volume of the precentral gyrus (BA6 area) decreases with worsening stereoacuity.


Subject(s)
Cerebral Cortex , Exotropia , Gray Matter , Magnetic Resonance Imaging , Humans , Male , Female , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Exotropia/diagnostic imaging , Cross-Sectional Studies , Young Adult , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Case-Control Studies
4.
Niger Postgrad Med J ; 31(2): 147-155, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38826018

ABSTRACT

BACKGROUND: The thickness of extraocular muscles (EOMs) is important in the management of several conditions associated with EOM enlargement. This study determined the normative values of EOM diameters in adult patients seen at a teaching hospital in Nigeria. MATERIALS AND METHODS: The study measured the thickness of the EOMs and the interzygomatic line (IZL) on brain images of 300 patients with non-orbital conditions (150 computed tomography [CT] and 150 magnetic resonance imaging [MRI]) archived in the radiological database of Delta State University Hospital, Nigeria, after ethical clearance. The Statistical Package for the Social Sciences (version 23) was used to obtain descriptive statistics and further compare the variables based on gender, age groups and laterality. The association between parameters was tested using Pearson's correlation test. A probability value of <5% was considered significant. RESULTS: The thickest muscles were the medial rectus (0.42 ± 0.08 cm) and superior muscle group (0.42 ± 0.33 cm) on CT and the inferior rectus (0.40 ± 0.08 cm) on MRI. The diameters were symmetrical with sexual dimorphism in the superior muscle group on CT, medial and lateral recti on MRI and sum of all EOMs on both imaging groups (P < 0.05). The superior muscle group and the sum of all EOMs showed significant age group variations and a positive correlation with age. We noted a positive correlation between each EOM diameter and the sum of all EOMs besides the IZL (P < 0.05). CONCLUSION: This study offers normative data regarding EOMs that radiologists and ophthalmologists can use to diagnose disease conditions that cause EOM enlargement and further assess their response to treatment.


Subject(s)
Magnetic Resonance Imaging , Oculomotor Muscles , Tomography, X-Ray Computed , Humans , Oculomotor Muscles/diagnostic imaging , Oculomotor Muscles/anatomy & histology , Male , Female , Adult , Nigeria , Retrospective Studies , Middle Aged , Magnetic Resonance Imaging/methods , Aged , Reference Values , Young Adult , Adolescent
5.
J Am Coll Radiol ; 21(6S): S168-S202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823943

ABSTRACT

As the proportion of women diagnosed with invasive breast cancer increases, the role of imaging for staging and surveillance purposes should be determined based on evidence-based guidelines. It is important to understand the indications for extent of disease evaluation and staging, as unnecessary imaging can delay care and even result in adverse outcomes. In asymptomatic patients that received treatment for curative intent, there is no role for imaging to screen for distant recurrence. Routine surveillance with an annual 2-D mammogram and/or tomosynthesis is recommended to detect an in-breast recurrence or a new primary breast cancer in women with a history of breast cancer, and MRI is increasingly used as an additional screening tool in this population, especially in women with dense breasts. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Subject(s)
Breast Neoplasms , Evidence-Based Medicine , Neoplasm Invasiveness , Societies, Medical , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Humans , Female , United States , Neoplasm Invasiveness/diagnostic imaging , Neoplasm Staging , Mammography/standards , Magnetic Resonance Imaging/methods
6.
Mol Biol Rep ; 51(1): 714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824264

ABSTRACT

BACKGROUND: NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS: Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION: The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.


Subject(s)
Exome Sequencing , Genes, Recessive , Pedigree , Phenotype , Receptor, Notch3 , Humans , Receptor, Notch3/genetics , Male , Female , Exome Sequencing/methods , Genes, Recessive/genetics , Adult , Genetic Association Studies , CADASIL/genetics , Magnetic Resonance Imaging/methods , Alleles , Homozygote , Consanguinity , Loss of Function Mutation/genetics , Mutation/genetics , Heterozygote
7.
Alzheimers Res Ther ; 16(1): 119, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822365

ABSTRACT

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Subject(s)
Alzheimer Disease , Locus Coeruleus , Magnetic Resonance Imaging , Parietal Lobe , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Aged , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging , Aged, 80 and over , Attention/physiology , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Positron-Emission Tomography , Cross-Sectional Studies , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Neuropsychological Tests
9.
Neurosurg Focus ; 56(6): E10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823056

ABSTRACT

OBJECTIVE: Hoffmann's sign testing is a commonly used physical examination in clinical practice for patients with cervical spondylotic myelopathy (CSM). However, the pathophysiological mechanisms underlying its occurrence and development have not been thoroughly investigated. Therefore, the present study aimed to explore whether a positive Hoffmann's sign (PHS) in CSM patients is associated with spinal cord and brain remodeling and to identify potential neuroimaging biomarkers with diagnostic value. METHODS: Seventy-six patients with CSM and 40 sex- and age-matched healthy controls (HCs) underwent multimodal MRI. Based on the results of the Hoffmann's sign examination, patients were divided into two groups: those with a PHS (n = 38) and those with a negative Hoffmann's sign (NHS; n = 38). Quantification of spinal cord and brain structural and functional parameters of the participants was performed using various methods, including functional connectivity analysis, voxel-based morphometry, and atlas-based analysis based on functional MRI and structural MRI data. Furthermore, this study conducted a correlation analysis between neuroimaging metrics and neurological function and utilized a support vector machine (SVM) algorithm for the classification of PHS and NHS. RESULTS: In comparison with the NHS and HC groups, PHS patients exhibited significant reductions in the cross-sectional area and fractional anisotropy (FA) of the lateral corticospinal tract (CST), reticulospinal tract (RST), and fasciculus cuneatus, concomitant with bilateral reductions in the volume of the lateral pallidum. The functional connectivity analysis indicated a reduction in functional connectivity between the left lateral pallidum and the right angular gyrus in the PHS group. The correlation analysis indicated a significant positive association between the CST and RST FA and the volume of the left lateral pallidum in PHS patients. Furthermore, all three variables exhibited a positive correlation with the patients' motor function. Finally, using multimodal neuroimaging metrics in conjunction with the SVM algorithm, PHS and NHS were classified with an accuracy rate of 85.53%. CONCLUSIONS: This research revealed a correlation between structural damage to the pallidum and RST and the presence of Hoffmann's sign as well as the motor function in patients with CSM. Features based on neuroimaging indicators have the potential to serve as biomarkers for assessing the extent of neuronal damage in CSM patients.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Spinal Cord Diseases , Spondylosis , Humans , Male , Female , Middle Aged , Spondylosis/diagnostic imaging , Neuroimaging/methods , Spinal Cord Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Adult , Cervical Vertebrae/diagnostic imaging
10.
Interv Cardiol Clin ; 13(3): 343-354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839168

ABSTRACT

Lymphatic disorders in congenital heart disease can be broadly classified into chest compartment, abdominal compartment, or multicompartment disorders. Heavily T2-weighted noninvasive lymphatic imaging (for anatomy) and invasive dynamic contrast magnetic resonance lymphangiography (for flow) have become the main diagnostic modalities of choice to identify the cause of lymphatic disorders. Selective lymphatic duct embolization (SLDE) has largely replaced total thoracic duct embolization as the main lymphatic therapeutic procedure. Recurrence of symptoms needing repeat interventions is more common in patients who underwent SLDE. Novel surgical and transcatheter thoracic duct decompression strategies are promising, but long-term follow-up is critical and eagerly awaited.


Subject(s)
Embolization, Therapeutic , Heart Defects, Congenital , Humans , Heart Defects, Congenital/surgery , Heart Defects, Congenital/diagnosis , Embolization, Therapeutic/methods , Lymphatic Diseases/diagnosis , Lymphography/methods , Magnetic Resonance Imaging/methods , Thoracic Duct/surgery
11.
Sci Rep ; 14(1): 12657, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38825633

ABSTRACT

When lying inside a MRI scanner and even in the absence of any motion, the static magnetic field of MRI scanners induces a magneto-hydrodynamic stimulation of subjects' vestibular organ (MVS). MVS thereby not only causes a horizontal vestibular nystagmus but also induces a horizontal bias in spatial attention. In this study, we aimed to determine the time course of MVS-induced biases in both VOR and spatial attention inside a 3 T MRI-scanner as well as their respective aftereffects after participants left the scanner. Eye movements and overt spatial attention in a visual search task were assessed in healthy volunteers before, during, and after a one-hour MVS period. All participants exhibited a VOR inside the scanner, which declined over time but never vanished completely. Importantly, there was also an MVS-induced horizontal bias in spatial attention and exploration, which persisted throughout the entire hour within the scanner. Upon exiting the scanner, we observed aftereffects in the opposite direction manifested in both the VOR and in spatial attention, which were statistically no longer detectable after 7 min. Sustained MVS effects on spatial attention have important implications for the design and interpretation of fMRI-studies and for the development of therapeutic interventions counteracting spatial neglect.


Subject(s)
Attention , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Attention/physiology , Eye Movements/physiology , Young Adult , Reflex, Vestibulo-Ocular/physiology , Space Perception/physiology , Vestibule, Labyrinth/physiology , Vestibule, Labyrinth/diagnostic imaging , Healthy Volunteers
12.
BMC Med Imaging ; 24(1): 132, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840058

ABSTRACT

BACKGROUND: While early diagnosis of giant cell arteritis (GCA) based on clinical criteria and contrast-enhanced MRI findings can lead to early treatment and prevention of blindness and cerebrovascular accidents, previously reported diagnostic methods which utilize contrast-enhanced whole head images are cumbersome. Diagnostic delay is common as patients may not be aware of initial symptoms and their significance. To improve current diagnostic capabilities, new MRI-based diagnostic criteria need to be established. This study aimed to evaluate the "multifocal arcuate sign" on short tau inversion recovery (STIR) and contrast-enhanced T1-weighted (CE-T1W) images as a novel extracranial finding for the diagnosis of GCA. METHODS: A total of 17 consecutive patients (including five with GCA) who underwent CE-T1W and whole-brain axial STIR imaging simultaneously between June 2010 and April 2020 were enrolled. We retrospectively reviewed their MR images. The "multifocal arcuate sign" was defined as "multiple distant arcuate areas with high signal intensity in extracranial soft tissues such as subcutaneous fat, muscles, and tendons." Extracranial abnormal high-signal-intensity areas were classified as "None," when no lesions were detected; "Monofocal," when lesions were detected only in one place; and "Multifocal," when lesions were detected in multiple places. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of "Multifocal" areas were calculated using cross tabulation. Fisher's exact test was used to compare "Multifocal" areas in five patients with GCA and those with other diseases. In addition, mean Cohen's kappa and Fleiss' kappa statistics were used to compare inter-reader agreement. RESULTS: The sensitivity, specificity, PPV, and NPV of the "multifocal arcuate sign" in patients with GCA were 60%, 92-100%, 75-100%, and 85-86%, respectively. Significantly more patients with GCA had "Multifocal" areas compared to those with other diseases (Fisher's exact test, p = 0.008-0.027). Mean Cohen's kappa and Fleiss' kappa for inter-reader agreement with respect to the five GCA patients were 0.52 and 0.49, respectively, for both STIR and CE-T1W sequences. CONCLUSIONS: The new radiologic finding of "multifocal arcuate sign" on STIR and CE-T1W images may be used as a radiologic criterion for the diagnosis of GCA, which can make plain MRI a promising diagnostic modality.


Subject(s)
Contrast Media , Giant Cell Arteritis , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Giant Cell Arteritis/diagnostic imaging , Aged , Female , Male , Retrospective Studies , Magnetic Resonance Imaging/methods , Middle Aged , Aged, 80 and over
13.
J Nanobiotechnology ; 22(1): 313, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840120

ABSTRACT

Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.


Subject(s)
Breast Neoplasms , CD56 Antigen , Killer Cells, Natural , Photochemotherapy , Polyethylene Glycols , Breast Neoplasms/therapy , Humans , Female , Animals , Photochemotherapy/methods , Mice , Polyethylene Glycols/chemistry , Cell Line, Tumor , CD56 Antigen/metabolism , Immunotherapy, Adoptive/methods , Apoptosis/drug effects , Magnetic Resonance Imaging/methods , Mice, Inbred BALB C , Mice, Nude
14.
Radiol Cardiothorac Imaging ; 6(3): e230252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842454

ABSTRACT

Purpose To assess the correlation between noninvasive cardiac MRI-derived parameters with pressure-volume (PV) loop data and evaluate changes in left ventricular function after myocardial infarction (MI). Materials and Methods Sixteen adult female swine were induced with MI, with six swine used as controls and 10 receiving platelet-derived growth factor-AB (PDGF-AB). Load-independent measures of cardiac function, including slopes of end-systolic pressure-volume relationship (ESPVR) and preload recruitable stroke work (PRSW), were obtained on day 28 after MI. Cardiac MRI was performed on day 2 and day 28 after infarct. Global longitudinal strain (GLS) and global circumferential strain (GCS) were measured. Ventriculo-arterial coupling (VAC) was derived from PV loop and cardiac MRI data. Pearson correlation analysis was performed. Results GCS (r = 0.60, P = .01), left ventricular ejection fraction (LVEF) (r = 0.60, P = .01), and cardiac MRI-derived VAC (r = 0.61, P = .01) had a significant linear relationship with ESPVR. GCS (r = 0.75, P < .001) had the strongest significant linear relationship with PRSW, followed by LVEF (r = 0.67, P = .005) and cardiac MRI-derived VAC (r = 0.60, P = .01). GLS was not significantly correlated with ESPVR or PRSW. There was a linear correlation (r = 0.82, P < .001) between VAC derived from cardiac MRI and from PV loop data. GCS (-3.5% ± 2.3 vs 0.5% ± 1.4, P = .007) and cardiac MRI-derived VAC (-0.6 ± 0.6 vs 0.3 ± 0.3, P = .001) significantly improved in the animals treated with PDGF-AB 28 days after MI compared with controls. Conclusion Cardiac MRI-derived parameters of MI correlated with invasive PV measures, with GCS showing the strongest correlation. Cardiac MRI-derived measures also demonstrated utility in assessing therapeutic benefit using PDGF-AB. Keywords: Cardiac MRI, Myocardial Infarction, Pressure Volume Loop, Strain Imaging, Ventriculo-arterial Coupling Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Disease Models, Animal , Myocardial Infarction , Animals , Female , Swine , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Magnetic Resonance Imaging/methods , Ventricular Function, Left/physiology , Stroke Volume/physiology , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods
15.
Radiol Cardiothorac Imaging ; 6(3): e230271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842455

ABSTRACT

Purpose To provide a comprehensive head-to-head comparison and temporal analysis of cardiac MRI indications between the European Society of Cardiology (ESC) and American College of Cardiology/American Heart Association (ACC/AHA) guidelines to identify areas of consensus and divergence. Materials and Methods A systematic review and meta-analysis was conducted. ESC and ACC/AHA guidelines published until May 2023 were systematically screened for recommendations related to cardiac MRI. The class of recommendation (COR) and level of evidence (LOE) for cardiac MRI recommendations were compared between the two guidelines and between newer versus older versions of each guideline using χ2 or Fisher exact tests. Results ESC guidelines included 109 recommendations regarding cardiac MRI, and ACC/AHA guidelines included 90 recommendations. The proportion of COR I and LOE B was higher in ACC/AHA versus ESC guidelines (60% [54 of 90] vs 46.8% [51 of 109]; P = .06 and 53% [48 of 90] vs 35.8% [39 of 109], respectively; P = .01). The increase in the number of cardiac MRI recommendations over time was significantly higher in ESC guidelines (from 63 to 109 for ESC vs from 65 to 90 for ACC/AHA; P = .03). The main areas of consensus were found in heart failure and hypertrophic cardiomyopathy, while the main divergences were in valvular heart disease, arrhythmias, and aortic disease. Conclusion ESC guidelines included more recommendations related to cardiac MRI use, whereas the ACC/AHA recommendations had higher COR and LOE. The number of cardiac MRI recommendations increased significantly over time in both guidelines, indicating the increasing role of cardiac MRI evaluation and management of cardiovascular disease. Keywords: Cardiovascular Magnetic Resonance, Guideline, European Society of Cardiology, ESC, American College of Cardiology/American Heart Association, ACC/AHA Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
American Heart Association , Magnetic Resonance Imaging , Practice Guidelines as Topic , Humans , Practice Guidelines as Topic/standards , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , United States , Europe , Cardiology/standards , Cardiology/trends , Heart Diseases/diagnostic imaging , Societies, Medical
16.
Brain Behav ; 14(6): e3554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841732

ABSTRACT

BACKGROUND: Deep-learning (DL) methods are rapidly changing the way researchers classify neurological disorders. For example, combining functional magnetic resonance imaging (fMRI) and DL has helped researchers identify functional biomarkers of neurological disorders (e.g., brain activation and connectivity) and pilot innovative diagnostic models. However, the knowledge required to perform DL analyses is often domain-specific and is not widely taught in the brain sciences (e.g., psychology, neuroscience, and cognitive science). Conversely, neurological diagnoses and neuroimaging training (e.g., fMRI) are largely restricted to the brain and medical sciences. In turn, these disciplinary knowledge barriers and distinct specializations can act as hurdles that prevent the combination of fMRI and DL pipelines. The complexity of fMRI and DL methods also hinders their clinical adoption and generalization to real-world diagnoses. For example, most current models are not designed for clinical settings or use by nonspecialized populations such as students, clinicians, and healthcare workers. Accordingly, there is a growing area of assistive tools (e.g., software and programming packages) that aim to streamline and increase the accessibility of fMRI and DL pipelines for the diagnoses of neurological disorders. OBJECTIVES AND METHODS: In this study, we present an introductory guide to some popular DL and fMRI assistive tools. We also create an example autism spectrum disorder (ASD) classification model using assistive tools (e.g., Optuna, GIFT, and the ABIDE preprocessed repository), fMRI, and a convolutional neural network. RESULTS: In turn, we provide researchers with a guide to assistive tools and give an example of a streamlined fMRI and DL pipeline. CONCLUSIONS: We are confident that this study can help more researchers enter the field and create accessible fMRI and deep-learning diagnostic models for neurological disorders.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Nervous System Diseases , Humans , Magnetic Resonance Imaging/methods , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/physiopathology , Brain/diagnostic imaging , Brain/physiopathology
17.
Brain Behav ; 14(6): e3548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841819

ABSTRACT

BACKGROUND: The revised Lublin classification offers a framework for categorizing multiple sclerosis (MS) according to the clinical course and imaging results. Diagnosis of secondary progressive MS (SPMS) is often delayed by a period of uncertainty. Several quantitative magnetic resonance imaging (qMRI) markers are associated with progressive disease states, but they are not usually available in clinical practice. METHODS: The MAGNON project enrolled 629 patients (early relapsing-remitting MS (RRMS), n = 51; RRMS with suspected SPMS, n = 386; SPMS, n = 192) at 55 centers in Germany. Routine magnetic resonance imaging (MRI) scans at baseline and after 12 months were analyzed using a centralized automatic processing pipeline to quantify lesions and normalized brain and thalamic volume. Clinical measures included relapse activity, disability, and MS phenotyping. Neurologists completed questionnaires before and after receiving the qMRI reports. RESULTS: According to the physicians' reports, qMRI results changed their assessment of the patient in 31.8% (baseline scan) and 27.6% (follow-up scan). For ∼50% of patients with RRMS with suspected SPMS, reports provided additional information that the patient was transitioning to SPMS. In >25% of all patients, this information influenced the physicians' assessment of the patient's current phenotype. However, actual changes of treatment were reported only in a minority of these patients. CONCLUSIONS: The MAGNON results suggest that standardized qMRI reports may be integrated into the routine clinical care of MS patients and support the application of the Lublin classification as well as treatment decisions. The highest impact was reported in patients with suspected SPMS, indicating a potential to reduce diagnostic uncertainty.


Subject(s)
Brain , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Female , Adult , Male , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Middle Aged , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Disease Progression , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/therapy , Germany
18.
Brain Behav ; 14(6): e3550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841739

ABSTRACT

BACKGROUND: Cerebral specialization and interhemispheric cooperation are two vital features of the human brain. Their dysfunction may be associated with disease progression in patients with Alzheimer's disease (AD), which is featured as progressive cognitive degeneration and asymmetric neuropathology. OBJECTIVE: This study aimed to examine and define two inherent properties of hemispheric function in patients with AD by utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: Sixty-four clinically diagnosed AD patients and 52 age- and sex-matched cognitively normal subjects were recruited and underwent MRI and clinical evaluation. We calculated and compared brain specialization (autonomy index, AI) and interhemispheric cooperation (connectivity between functionally homotopic voxels, CFH). RESULTS: In comparison to healthy controls, patients with AD exhibited enhanced AI in the left middle occipital gyrus. This increase in specialization can be attributed to reduced functional connectivity in the contralateral region, such as the right temporal lobe. The CFH of the bilateral precuneus and prefrontal areas was significantly decreased in AD patients compared to controls. Imaging-cognitive correlation analysis indicated that the CFH of the right prefrontal cortex was marginally positively related to the Montreal Cognitive Assessment score in patients and the Auditory Verbal Learning Test score. Moreover, taking abnormal AI and CFH values as features, support vector machine-based classification achieved good accuracy, sensitivity, specificity, and area under the curve by leave-one-out cross-validation. CONCLUSION: This study suggests that individuals with AD have abnormal cerebral specialization and interhemispheric cooperation. This provides new insights for further elucidation of the pathological mechanisms of AD.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Middle Aged , Support Vector Machine , Aged, 80 and over
19.
Radiol Cardiothorac Imaging ; 6(3): e230154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842453

ABSTRACT

Purpose To perform a systematic review and meta-analysis to assess the effect of enzyme replacement therapy on cardiac MRI parameters in patients with Fabry disease. Materials and Methods A systematic literature search was conducted from January 1, 2000, through January 1, 2024, in PubMed, ClinicalTrials.gov, Embase, and Cochrane Library databases. Study outcomes were changes in the following parameters: (a) left ventricular wall mass (LVM), measured in grams; (b) LVM indexed to body mass index, measured in grams per meters squared; (c) maximum left ventricular wall thickness (MLVWT), measured in millimeters; (d) late gadolinium enhancement (LGE) extent, measured in percentage of LVM; and (e) native T1 mapping, measured in milliseconds. A random-effects meta-analysis of the pooled mean differences between baseline and follow-up parameters was conducted. The study protocol was registered in PROSPERO (CRD42022336223). Results The final analysis included 11 studies of a total of 445 patients with Fabry disease (mean age ± SD, 41 years ± 11; 277 male, 168 female). Between baseline and follow-up cardiac MRI, the following did not change: T1 mapping (mean difference, 6 msec [95% CI: -2, 15]; two studies, 70 patients, I2 = 88%) and LVM indexed (mean difference, -1 g/m2 [95% CI: -6, 3]; four studies, 290 patients, I2 = 81%). The following measures minimally decreased: LVM (mean difference, -18 g [95% CI: -33, -3]; seven studies, 107 patients, I2 = 96%) and MLVWT (mean difference, -1 mm [95% CI: -2, -0.02]; six studies, 151 patients, I2 = 90%). LGE extent increased (mean difference, 1% [95% CI: 1, 1]; three studies, 114 patients, I2 = 85%). Conclusion In patients with Fabry disease, enzyme replacement therapy was associated with stabilization of LVM, MLVWT, and T1 mapping values, whereas LGE extent mildly increased. Keywords: Fabry Disease, Enzyme Replacement Therapy (ERT), Cardiac MRI, Late Gadolinium Enhancement (LGE) Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease , Magnetic Resonance Imaging , Fabry Disease/drug therapy , Fabry Disease/diagnostic imaging , Fabry Disease/pathology , Humans , Enzyme Replacement Therapy/methods , Magnetic Resonance Imaging/methods , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology
20.
Radiographics ; 44(7): e230208, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843097

ABSTRACT

Osteoid osteoma (OO) is the third most prevalent benign bone neoplasm in children. Although it predominantly affects the diaphysis of long bones, OO can assume an intra-articular location in the epiphysis or the intracapsular portions of bones. The most common location of intra-articular OO is the hip joint. The presentation of intra-articular OOs often poses a diagnostic enigma, both from clinical and radiologic perspectives. Initial symptoms are often vague and nonspecific, characterized by joint pain, stiffness, and limited range of motion, which frequently contributes to a delayed diagnosis. Radiographic findings range from normal to a subtle sclerotic focus, which may or may not have a lucent nidus. In contrast to their extra-articular counterparts, intra-articular lesions have distinct features at MRI, including synovitis, joint effusion, and bone marrow edema-like signal intensity. While CT remains the standard for identifying the nidus, even CT may be inadequate in visualizing it in some cases, necessitating the use of bone scintigraphy or fluorine 18-labeled sodium fluoride PET/CT for definitive diagnosis. Radiologists frequently play a pivotal role in suggesting this diagnosis. However, familiarity with the unique imaging attributes of intra-articular OO is key to this endeavor. Awareness of these distinctive imaging findings of intra-articular OO is crucial for avoiding diagnostic delay, ensuring timely intervention, and preventing unnecessary procedures or surgeries resulting from a misdiagnosis. The authors highlight and illustrate the different manifestations of intra-articular OO as compared with the more common extra-articular lesions with respect to clinical presentation and imaging findings. ©RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Bone Neoplasms , Osteoma, Osteoid , Humans , Osteoma, Osteoid/diagnostic imaging , Bone Neoplasms/diagnostic imaging , Diagnosis, Differential , Child , Magnetic Resonance Imaging/methods , Hip Joint/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...