Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran Biomed J ; 23(3): 209-19, 2019 05.
Article in English | MEDLINE | ID: mdl-30797225

ABSTRACT

Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications, as well as acting as carriers of enzymes, antibodies, or anti-cancer drugs. Since the bacterial growth is difficult and the yield of magnetosome production is low, the application of magnetosome has not been developed on a commercial scale. Methods: Magnetospirillum gryphiswaldense strain MSR-1 was used in a modified current culture medium supplemented by different concentrations of oxygen, iron, carbon, and nitrogen, to increase the yield of magnetosomes. Results: Our improved MSR-1 culture medium increased magnetosome yield, magnetosome number per bacterial cell, magnetic response, and bacterial cell growth yield significantly. The yield of magnetosome increased approximately four times. The optimized culture medium containing 25 mM of Na-pyruvate, 40 mM of NaNO3, 200 µM of ferrous sulfate, and 5-10 ppm of dissolved oxygen (DO) resulted in 186.67 mg of magnetosome per liter of culture medium. The iron uptake increased significantly, and the magnetic response of the bacteria to the magnetic field was higher than threefold as compared to the previously reported procedures. Conclusion: This technique not only decreases the cultivation time but also reduces the production cost. In this modified method, the iron and DO are the major factors affecting the production of magnetosome by M. gryphiswaldense strain MSR-1. However, refining this technique will enable a further yield of magnetosome and cell density.


Subject(s)
Environment , Magnetosomes/metabolism , Magnetospirillum/metabolism , Carbon/pharmacology , Iron/pharmacology , Magnetosomes/drug effects , Magnetosomes/ultrastructure , Magnetospirillum/drug effects , Magnetospirillum/growth & development , Magnetospirillum/ultrastructure , Nitrogen/pharmacology , Oxygen/pharmacology , Pyruvic Acid/pharmacology
2.
PLoS One ; 10(5): e0127481, 2015.
Article in English | MEDLINE | ID: mdl-25993286

ABSTRACT

Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetospirillum/metabolism , Polyethylene Glycols/pharmacology , Culture Media/pharmacology , Magnetite Nanoparticles/ultrastructure , Magnetosomes/drug effects , Magnetosomes/ultrastructure , Magnetospirillum/drug effects , Magnetospirillum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...