Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 367(17)2020 09 01.
Article in English | MEDLINE | ID: mdl-32821904

ABSTRACT

Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.


Subject(s)
Light , Magnetospirillum/genetics , Magnetospirillum/radiation effects , Phototaxis/physiology , Phytochrome/genetics , Mutagenesis, Site-Directed
2.
Phys Biol ; 16(6): 066008, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31181559

ABSTRACT

While most quantitative studies of the motion of magnetotactic bacteria rely on the premise that the cells' magnetic dipole moment is aligned with their direction of motility, this assumption has so far rarely been challenged. Here we use phase contrast microscopy to detect the rotational diffusion of non-motile cells of Magnetospirillum magneticum AMB-1 around their magnetic moment, showing that in this species the magnetic dipole moment is, in fact, not exactly aligned with the cell body axis. From the cell rotational trajectories, we are able to infer the misalignment between cell magnetic moment and body axis with a precision of better than 1°, showing that it is, on average, 6°, and can be as high as 20°. We propose a method to correct for this misalignment, and perform a non-biased measurement of the magnetic moment of single cells based on the analysis of their orientation distribution. Using this correction, we show that magnetic moment strongly correlates with cell length. The existence of a range of misalignments between magnetic moment and cell axis in a population implies that the orientation and trajectories of magnetotactic bacteria placed in external magnetic fields is more complex than generally assumed, and might show some important cell-to-cell differences.


Subject(s)
Magnetic Fields , Magnetospirillum/radiation effects , Magnetospirillum/physiology
3.
Enzyme Microb Technol ; 72: 72-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25837510

ABSTRACT

Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3',5,5'-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping-pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.


Subject(s)
Magnetosomes/metabolism , Magnetospirillum/metabolism , Peroxidases/metabolism , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/radiation effects , Hydrogen Peroxide/metabolism , Iron/metabolism , Kinetics , Light , Magnetosomes/radiation effects , Magnetospirillum/radiation effects , Models, Biological , Peroxidases/isolation & purification , Peroxidases/radiation effects
4.
Curr Microbiol ; 65(1): 98-107, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22538470

ABSTRACT

Magnetotactic bacteria (MTB) are capable of synthesizing nano-sized, intracellular membrane-bound magnetosomes. To learn more about the genetic factors involved in magnetosome formation, transposon mutagenesis was carried out by conjugation using a hyperactive mariner transposon to obtain nonmagnetic mutants of Magnetospirillum magneticum AMB-1. A mutant with defect in uvrA gene encoding the DNA binding subunit of the UvrABC complex responsible for the process of nucleotide excision repair, was obtained. Growth, magnetosome formation and maintenance of magnetosome island (MAI) were further analyzed in the absence of UvrA. Interruption of uvrA led to decreased capacity to form magnetosome when cultured in the presence of oxygen. The deficiency in UvrA also resulted in an accelerated loss of the MAI under aerobic conditions indicating that the nucleotide excision repair system guards against the instability of the MAI. The incapacity of MTB to efficiently initiate recombination mediated by RecA rescued the instability of MAI observed in uvrA mutant. Elevated recombination activity resulting from the accumulation of unrepaired mutations may thus account for the instability of MAI in the absence of UvrA.


Subject(s)
DNA Repair , Genomic Instability , Genomic Islands , Magnetosomes/genetics , Magnetospirillum/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Damage/radiation effects , DNA Repair/radiation effects , Genomic Instability/radiation effects , Genomic Islands/radiation effects , Magnetosomes/metabolism , Magnetospirillum/metabolism , Magnetospirillum/radiation effects , Mutagenesis , Recombination, Genetic , Ultraviolet Rays
5.
Appl Microbiol Biotechnol ; 90(1): 269-75, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21136050

ABSTRACT

Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magneto-aerotaxis. Little is known about MTB phototaxis, a response that might also aid navigation. In this study, we analyzed the relationship between phototaxis and magnetotaxis in Magnetospirillum magneticum strain AMB-1. Magnotactic AMB-1 cells migrated toward light, and migration increased with higher light intensity. This response was independent of wavelength, as AMB-1 cells migrated equally toward light from 400 to 750 nm. When AMB-1 cells were exposed to zero magnetic fields or to 0.2 mT magnetic fields that were opposite or orthogonal to the light beam, cells still migrated toward the light, indicating that phototaxis was independent of magnetotaxis. The R(mag) value and coercive force (H(c)) of AMB-1 increased when the bacteria were illuminated for 20 h, consistent with an increase in magnetosome synthesis or in magnetosome-containing cells. These results demonstrated that the M. magneticum AMB-1 responded to light as well as other environmental factors. To our knowledge, this is the first report of phototactic behavior in the bacteria of Magnetospirillum.


Subject(s)
Magnetospirillum/physiology , Magnetospirillum/radiation effects , Light , Magnetics , Magnetospirillum/chemistry
6.
Bioelectromagnetics ; 31(3): 246-51, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19780093

ABSTRACT

Magnetotactic bacteria are a diverse group of microorganisms which possess one or more chains of magnetosomes and are endowed with the ability to use geomagnetic fields for direction sensing, thus providing a simple and excellent model for the study of magnetite-based magnetoreception. In this study, a 50 Hz, 2 mT pulsed magnetic field (PMF) was applied to study the effects on the formation of magnetosomes in Magnetospirillum sp. strain AMB-1. The results showed that the cellular magnetism (R(mag)) of AMB-1 culture significantly increased while the growth of cells remained unaffected after exposure. The number of magnetic particles per cell was enhanced by about 15% and slightly increased ratios of magnetic particles of superparamagnetic property (size <20 nm) and mature magnetosomes (size >50 nm) were observed after exposure to PMF. In addition, the intracellular iron accumulation slightly increased after PMF exposure. Therefore, it was concluded that 50 Hz, 2 mT PMF enhances the formation of magnetosomes in Magnetospirillum sp. strain AMB-1. Our results suggested that lower strength of PMF has no significant effects on the bacterial cell morphologies but could affect crystallization process of magnetosomes to some extent.


Subject(s)
Electromagnetic Fields , Magnetosomes/radiation effects , Magnetospirillum/radiation effects , Analysis of Variance , Intracellular Space/metabolism , Intracellular Space/radiation effects , Iron/metabolism , Magnetosomes/physiology , Magnetospirillum/physiology , Magnetospirillum/ultrastructure , Microscopy, Electron, Transmission , Periodicity
7.
Bioelectromagnetics ; 30(4): 313-21, 2009 May.
Article in English | MEDLINE | ID: mdl-19165820

ABSTRACT

Magnetotactic bacteria produce nanometer-size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1, cultures inoculated with either magnetic or non-magnetic pre-cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise C(mag) values of the cultures, which means that the percentage of magnetosome-containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up-regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non-magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB-1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome.


Subject(s)
Bacterial Proteins/genetics , Magnetics , Magnetospirillum/metabolism , Organelles/ultrastructure , Genes, Bacterial , Iron/metabolism , Magnetospirillum/radiation effects , Microscopy, Electron, Transmission
8.
IEEE Trans Nanobioscience ; 2(3): 146-9, 2003 Sep.
Article in English | MEDLINE | ID: mdl-15376948

ABSTRACT

The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.


Subject(s)
Cell Phone , Magnetospirillum/growth & development , Magnetospirillum/radiation effects , Microwaves/adverse effects , Apoptosis/radiation effects , Dose-Response Relationship, Radiation , Environmental Exposure/adverse effects , Magnetospirillum/classification , Radiation Dosage , Radio Waves/adverse effects , Species Specificity
9.
IEEE Trans Nanobioscience ; 2(1): 40-3, 2003 Mar.
Article in English | MEDLINE | ID: mdl-15382422

ABSTRACT

Ferromagnetic transduction models have been proposed as a potential mechanism for mobile phone bioeffects. These models are based on the coupling of RF and pulsed electromagnetic emissions to biogenic magnetite (Fe3O4) present in the human brain via either ferromagnetic resonance or mechanical activation of cellular ion channels. We have tested these models experimentally for the first time using a bacterial analogue (Magnetospirillum magnetotacticum) which produces intracellular biogenic magnetite similar to that present in the human brain. Experimental evaluation revealed that exposure to mobile phone emissions resulted in a consistent and significantly higher proportion of cell death in exposed cultures versus sham exposure (p = 0.037). Though there appears to be a repeatable trend toward higher cell mortality in magnetite-producing bacteria exposed to mobile phone emissions, it is not yet clear that this would extrapolate to a deleterious health effect in humans.


Subject(s)
Apoptosis/radiation effects , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Cell Phone , Magnetospirillum/metabolism , Magnetospirillum/radiation effects , Membrane Proteins/metabolism , Membrane Proteins/radiation effects , Microwaves , Electromagnetic Fields , Ferrosoferric Oxide , Iron/metabolism , Iron/radiation effects , Magnetospirillum/cytology , Oxides/metabolism , Oxides/radiation effects , Pilot Projects , Radio Waves , Signal Transduction/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...