Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 19633, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184360

ABSTRACT

Maize streak virus disease (MSVD), caused by Maize streak virus (MSV; genus Mastrevirus), is one of the most severe and widespread viral diseases that adversely reduces maize yield and threatens food security in Africa. An effective control and management of MSVD requires robust and sensitive diagnostic tests capable of rapid detection of MSV. In this study, a loop-mediated isothermal amplification (LAMP) assay was designed for the specific detection of MSV. This test has shown to be highly specific and reproducible and able to detect MSV in as little as 10 fg/µl of purified genomic DNA obtained from a MSV-infected maize plant, a sensitivity 105 times higher to that obtained with polymerase chain reaction (PCR) in current general use. The high degree of sequence identity between Zambian and other African MSV isolates indicate that this LAMP assay can be used for detecting MSV in maize samples from any region in Africa. Furthermore, this assay can be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories across Africa strengthening diagnostic capacity in countries dealing with MSD.


Subject(s)
DNA, Viral/analysis , Genome, Viral , Maize streak virus/classification , Maize streak virus/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Zea mays/virology , Africa , Maize streak virus/isolation & purification
2.
Virus Res ; 232: 69-76, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28192163

ABSTRACT

Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A1, has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A1. We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A1.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Maize streak virus/genetics , Phylogeny , Plant Diseases/virology , Zea mays/virology , Genotype , High-Throughput Nucleotide Sequencing , Kenya , Maize streak virus/classification , Phylogeography , Uganda
3.
Arch Virol ; 162(2): 597-602, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27815694

ABSTRACT

Sugarcane and maize plants showing symptoms typical of those described for the so-called "African streak viruses" (AfSVs) were encountered during field surveys conducted from February to July 2015 to document viruses infecting both crops across the northern Guinea savannah region of Nigeria. As part of this study, two categories of complete mastrevirus-like genome sequences were obtained from nine samples (maize = 2; sugarcane = 7). In pairwise comparisons, the full-length genomes of the first sequence category (2,687 nt each; maize = 2; sugarcane = 2) shared 96 to 99% identity with global isolates of the A-strain of maize streak virus (MSV-A), indicating that sugarcane may also serve as a reservoir host to MSV-A. Analysis of the complete genomes belonging to the second sequence category (2,757 nt each; sugarcane = 5) showed that they shared 42 to 67% identity with their closest AfSV relatives, thus indicating that they represent sequences of a novel mastrevirus. Both sequence categories shared 61-62% sequence identity with each other. Further analysis revealed that the novel sugarcane-infecting virus, tentatively named as sugarcane chlorotic streak virus (SCSV), arose from a putative interspecific recombination event involving two grass-infecting mastreviruses, eragrostis streak virus and urochloa streak virus, as putative parental sequences. The results of this study add to the repertoire of diverse AfSVs present in cereal and sugarcane mixed cropping landscapes in the northern Guinea savannah region of Nigeria, with implications for disease epidemiology.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Maize streak virus/genetics , Phylogeny , Saccharum/virology , Zea mays/virology , Base Sequence , Maize streak virus/classification , Maize streak virus/isolation & purification , Nigeria , Plant Diseases/virology , Recombination, Genetic , Sequence Alignment , Sequence Homology, Nucleic Acid
4.
Arch Virol ; 160(2): 483-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25344899

ABSTRACT

Throughout sub-Saharan Africa, maize streak virus strain A (MSV-A), the causal agent of maize streak disease (MSD), is an important biological constraint on maize production. In November/December 2010, an MSD survey was carried out in the forest and transition zones of Ghana in order to obtain MSV-A virulence sources for the development of MSD-resistant maize genotypes with agronomic properties suitable for these regions. In 79 well-distributed maize fields, the mean MSD incidence was 18.544 % and the symptom severity score was 2.956 (1 = no symptoms and 5 = extremely severe). We detected no correlation between these two variables. Phylogenetic analysis of cloned MSV-A isolates that were fully sequenced from samples collected in 51 of these fields, together with those sampled from various other parts of Africa, indicated that all of the Ghanaian isolates occurred within a broader cluster of West African isolates, all belonging to the highly virulent MSV-A1 subtype. Besides being the first report of a systematic MSV survey in Ghana, this study is the first to characterize the full-genome sequences of Ghanaian MSV isolates. The 51 genome sequences determined here will additionally be a valuable resource for the rational selection of representative MSV-A variant panels for MSD resistance screening.


Subject(s)
Genome, Viral/genetics , Maize streak virus/classification , Maize streak virus/genetics , Plant Diseases/virology , Zea mays/virology , Base Sequence , DNA, Circular/genetics , DNA, Viral/genetics , Forests , Genotype , Ghana , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeography , Plant Leaves/virology , Sequence Analysis, DNA
5.
Arch Virol ; 159(10): 2765-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24796552

ABSTRACT

The A-strain of maize streak virus (MSV-A; genus Mastrevirus, family Geminiviridae), the causal agent of maize streak disease, places a major constraint on maize production throughout sub-Saharan Africa. In West-African countries such as Nigeria, where maize is not cultivated year-round, this MSV strain is forced to overwinter in non-maize hosts. In order to both identify uncultivated grasses that might harbour MSV-A during the winter season and further characterise the diversity of related maize-associated streak viruses, we collected maize and grass samples displaying streak symptoms in a number of Nigerian maize fields. From these we isolated and cloned 18 full mastrevirus genomes (seven from maize and 11 from various wild grass species). Although only MSV-A isolates were obtained from maize, both MSV-A and MSV-F isolates were obtained from Digitaria ciliaris. Four non-MSV African streak viruses were also sampled, including sugarcane streak Reunion virus and Urochloa streak virus (USV) from Eleusine coacana, USV from Urochloa sp., maize streak Reunion virus (MSRV) from both Setaria barbata and Rottboellia sp., and a novel highly divergent mastrevirus from Axonopus compressus, which we have tentatively named Axonopus compressus streak virus (ACSV). Besides the discovery of this new mastrevirus species and expanding the known geographical and host ranges of MSRV, we have added D. ciliaris to the list of uncultivated species within which Nigerian MSV-A isolates are possibly able to overwinter.


Subject(s)
Maize streak virus/classification , Maize streak virus/genetics , Zea mays/virology , DNA, Viral , Digitaria/virology , Eleusine/virology , Genome, Viral/genetics , Nigeria , Plant Diseases/virology , Setaria Plant/virology
6.
J Virol ; 85(18): 9623-36, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715477

ABSTRACT

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeography , Plant Diseases/virology , Zea mays/virology , Africa , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Maize streak virus/classification , Molecular Epidemiology , Molecular Sequence Data , Sequence Analysis, DNA
7.
J Gen Virol ; 90(Pt 12): 3066-3074, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19692547

ABSTRACT

Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800 s, approximately 20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500 s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/pathogenicity , Plant Diseases/virology , Recombination, Genetic , Zea mays/virology , Bayes Theorem , Genome, Viral , Maize streak virus/classification , Molecular Sequence Data , Poaceae/virology , Sequence Analysis, DNA , Virulence
8.
J Gen Virol ; 89(Pt 9): 2063-2074, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18753214

ABSTRACT

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.


Subject(s)
Maize streak virus/genetics , Maize streak virus/pathogenicity , Africa , Base Sequence , Conserved Sequence , DNA, Viral/genetics , Food Microbiology , Geminiviridae/classification , Geminiviridae/genetics , Genome, Viral , Maize streak virus/classification , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Poaceae/virology , Recombination, Genetic , Reunion , Virulence/genetics , Zea mays/virology
9.
J Gen Virol ; 88(Pt 11): 3154-3165, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17947543

ABSTRACT

Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A(1)-A(6) - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A(1)-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A(1) recombination. One of the intra-MSV-A(1) recombinants, designated MSV-A(1)UgIII, accounted for >60 % of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species.


Subject(s)
Maize streak virus/classification , Maize streak virus/genetics , Plant Diseases/virology , Zea mays/virology , Base Sequence , DNA Fingerprinting , Evolution, Molecular , Genome, Viral/genetics , Genotype , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...