Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Arch Virol ; 167(12): 2753-2759, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36169719

ABSTRACT

The A-strain of maize streak virus (MSV) causes maize streak disease (MSD), which is a major biotic threat to maize production in sub-Saharan Africa. Previous studies have described different MSV strains of economic importance from southern and eastern African countries and how eastern African regions are hubs for MSV diversification. Despite these efforts, due to a lack of extensive sampling, there is limited knowledge about the MSV-A diversity in Ethiopia. Here, field sampling of maize plants and wild grasses with visible MSD symptoms was carried out in the western Ethiopian regions of Gambela, Oromia, and Benishangul-Gumuz during the maize-growing season of 2019. The complete genomes of MSV isolates (n = 60) were cloned and sequenced by the Sanger method. We used a model-based phylogenetic approach to analyse 725 full MSV genome sequences available in the GenBank database together with newly determined genome sequences from Ethiopia to determine their subtypes and identify recombinant lineages. Of the 127 fields accessed, MSD prevalence was highest, at 96%, in the Gambela region and lowest in Oromia, at 66%. The highest mean symptom severity of 4/5 (where 5 is the highest and 1 the lowest) was observed in Gambela and Benishangul-Gumuz. Our results show that these newly determined MSV isolates belong to recombinant lineage V of the A1 subtype, with the widest dissemination and greatest economic significance in sub-Saharan Africa and the adjacent Indian Ocean islands.


Subject(s)
Maize streak virus , Maize streak virus/genetics , Phylogeny , Genome, Viral , Plant Diseases , Zea mays , Ethiopia
2.
Arch Virol ; 166(3): 955-959, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33502595

ABSTRACT

Maize streak disease (MSD) is one of the most significant biotic constraints on the production of Africa's most important cereal crop. Until recently, the only virus known to cause severe MSD was the A-strain of maize streak virus (MSV/A), a member of the genus Mastrevirus, family Geminiviridae. However, over the past decade, two other mastreviruses, MSV/C and maize streak Réunion virus (MSRV), have been repeatedly found in the absence of MSV/A in maize plants displaying severe MSD symptoms. Here, we report on infectious clones of MSV/C and MSRV and test their ability to cause severe MSD symptoms. Although cloned MSV/C and MSRV genomes could cause systemic symptomatic infections in MSD-sensitive maize genotypes, these infections yielded substantially milder symptoms than those observed in the field. The MSV/C and MSRV isolates that we have examined are therefore unlikely to cause severe MSD on their own. Furthermore, mixed infections of MSRV and MSV/C with other mild MSV strains also consistently yielded mild MSD symptoms. It is noteworthy that MSRV produces distinctive striate symptoms in maize that are similar in pattern, albeit not in severity, to those seen in the field, showing that this virus may contribute to the severe MSD symptoms seen in the field. Therefore, despite not fulfilling Koch's postulates for MSV/C and MSRV as causal agents of severe MSD, we cannot exclude the possibility that these viruses could be contributing to currently emerging maize diseases.


Subject(s)
Maize streak virus/pathogenicity , Plant Diseases/virology , Zea mays/virology , DNA, Viral/genetics , Genome, Viral/genetics , Genotype , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeny , Sequence Analysis, DNA
3.
Sci Rep ; 10(1): 19633, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184360

ABSTRACT

Maize streak virus disease (MSVD), caused by Maize streak virus (MSV; genus Mastrevirus), is one of the most severe and widespread viral diseases that adversely reduces maize yield and threatens food security in Africa. An effective control and management of MSVD requires robust and sensitive diagnostic tests capable of rapid detection of MSV. In this study, a loop-mediated isothermal amplification (LAMP) assay was designed for the specific detection of MSV. This test has shown to be highly specific and reproducible and able to detect MSV in as little as 10 fg/µl of purified genomic DNA obtained from a MSV-infected maize plant, a sensitivity 105 times higher to that obtained with polymerase chain reaction (PCR) in current general use. The high degree of sequence identity between Zambian and other African MSV isolates indicate that this LAMP assay can be used for detecting MSV in maize samples from any region in Africa. Furthermore, this assay can be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories across Africa strengthening diagnostic capacity in countries dealing with MSD.


Subject(s)
DNA, Viral/analysis , Genome, Viral , Maize streak virus/classification , Maize streak virus/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Zea mays/virology , Africa , Maize streak virus/isolation & purification
4.
Arch Virol ; 165(8): 1925-1928, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32506147

ABSTRACT

Nine complete nucleotide sequences of geminialphasatellites (subfamily Geminialphasatellitinae, family Alphasatellitidae) recovered from the wild Poaceae Sorghum arundinaceum collected in Reunion are described and analyzed. While the helper geminivirus was identified as an isolate of maize streak virus (genus Mastrevirus, family Geminiviridae), the geminialphasatellite genomes were most closely related to, and shared ~63% identity with, clecrusatellites. Even though the geminialphasatellite molecules lack an adenine rich-region, they have the typical size of geminialphasatellites, encode a replication-associated protein in the virion sense, and have probable stem-loop structures at their virion-strand origins of replication. According to the proposed geminialphasatellite species and genus demarcation thresholds (88% and 70% nucleotide identity, respectively), the genomes identified here represent a new species (within a new genus) for which we propose the name "Sorghum mastrevirus-associated alphasatellite" (genus "Sorgasalphasatellite").


Subject(s)
Geminiviridae/genetics , Maize streak virus/genetics , Poaceae/virology , Sorghum/virology , Genome, Viral/genetics , Phylogeny , Plant Diseases/virology , Reunion , Sequence Analysis, DNA/methods , Zea mays/virology
5.
Virus Res ; 232: 69-76, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28192163

ABSTRACT

Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A1, has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A1. We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A1.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Maize streak virus/genetics , Phylogeny , Plant Diseases/virology , Zea mays/virology , Genotype , High-Throughput Nucleotide Sequencing , Kenya , Maize streak virus/classification , Phylogeography , Uganda
6.
Arch Virol ; 162(2): 597-602, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27815694

ABSTRACT

Sugarcane and maize plants showing symptoms typical of those described for the so-called "African streak viruses" (AfSVs) were encountered during field surveys conducted from February to July 2015 to document viruses infecting both crops across the northern Guinea savannah region of Nigeria. As part of this study, two categories of complete mastrevirus-like genome sequences were obtained from nine samples (maize = 2; sugarcane = 7). In pairwise comparisons, the full-length genomes of the first sequence category (2,687 nt each; maize = 2; sugarcane = 2) shared 96 to 99% identity with global isolates of the A-strain of maize streak virus (MSV-A), indicating that sugarcane may also serve as a reservoir host to MSV-A. Analysis of the complete genomes belonging to the second sequence category (2,757 nt each; sugarcane = 5) showed that they shared 42 to 67% identity with their closest AfSV relatives, thus indicating that they represent sequences of a novel mastrevirus. Both sequence categories shared 61-62% sequence identity with each other. Further analysis revealed that the novel sugarcane-infecting virus, tentatively named as sugarcane chlorotic streak virus (SCSV), arose from a putative interspecific recombination event involving two grass-infecting mastreviruses, eragrostis streak virus and urochloa streak virus, as putative parental sequences. The results of this study add to the repertoire of diverse AfSVs present in cereal and sugarcane mixed cropping landscapes in the northern Guinea savannah region of Nigeria, with implications for disease epidemiology.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Maize streak virus/genetics , Phylogeny , Saccharum/virology , Zea mays/virology , Base Sequence , Maize streak virus/classification , Maize streak virus/isolation & purification , Nigeria , Plant Diseases/virology , Recombination, Genetic , Sequence Alignment , Sequence Homology, Nucleic Acid
7.
Arch Virol ; 160(2): 483-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25344899

ABSTRACT

Throughout sub-Saharan Africa, maize streak virus strain A (MSV-A), the causal agent of maize streak disease (MSD), is an important biological constraint on maize production. In November/December 2010, an MSD survey was carried out in the forest and transition zones of Ghana in order to obtain MSV-A virulence sources for the development of MSD-resistant maize genotypes with agronomic properties suitable for these regions. In 79 well-distributed maize fields, the mean MSD incidence was 18.544 % and the symptom severity score was 2.956 (1 = no symptoms and 5 = extremely severe). We detected no correlation between these two variables. Phylogenetic analysis of cloned MSV-A isolates that were fully sequenced from samples collected in 51 of these fields, together with those sampled from various other parts of Africa, indicated that all of the Ghanaian isolates occurred within a broader cluster of West African isolates, all belonging to the highly virulent MSV-A1 subtype. Besides being the first report of a systematic MSV survey in Ghana, this study is the first to characterize the full-genome sequences of Ghanaian MSV isolates. The 51 genome sequences determined here will additionally be a valuable resource for the rational selection of representative MSV-A variant panels for MSD resistance screening.


Subject(s)
Genome, Viral/genetics , Maize streak virus/classification , Maize streak virus/genetics , Plant Diseases/virology , Zea mays/virology , Base Sequence , DNA, Circular/genetics , DNA, Viral/genetics , Forests , Genotype , Ghana , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeography , Plant Leaves/virology , Sequence Analysis, DNA
8.
PLoS One ; 9(8): e105932, 2014.
Article in English | MEDLINE | ID: mdl-25166274

ABSTRACT

Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing "dominant negative mutant" versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or "leaky" expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV's replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.


Subject(s)
Disease Resistance , Maize streak virus/genetics , Plants, Genetically Modified/virology , Zea mays/genetics , Zea mays/immunology , Cell Culture Techniques , Genome, Viral , Maize streak virus/immunology , Plants, Genetically Modified/immunology , Promoter Regions, Genetic , Transgenes , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication , Zea mays/virology
9.
Arch Virol ; 159(10): 2765-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24796552

ABSTRACT

The A-strain of maize streak virus (MSV-A; genus Mastrevirus, family Geminiviridae), the causal agent of maize streak disease, places a major constraint on maize production throughout sub-Saharan Africa. In West-African countries such as Nigeria, where maize is not cultivated year-round, this MSV strain is forced to overwinter in non-maize hosts. In order to both identify uncultivated grasses that might harbour MSV-A during the winter season and further characterise the diversity of related maize-associated streak viruses, we collected maize and grass samples displaying streak symptoms in a number of Nigerian maize fields. From these we isolated and cloned 18 full mastrevirus genomes (seven from maize and 11 from various wild grass species). Although only MSV-A isolates were obtained from maize, both MSV-A and MSV-F isolates were obtained from Digitaria ciliaris. Four non-MSV African streak viruses were also sampled, including sugarcane streak Reunion virus and Urochloa streak virus (USV) from Eleusine coacana, USV from Urochloa sp., maize streak Reunion virus (MSRV) from both Setaria barbata and Rottboellia sp., and a novel highly divergent mastrevirus from Axonopus compressus, which we have tentatively named Axonopus compressus streak virus (ACSV). Besides the discovery of this new mastrevirus species and expanding the known geographical and host ranges of MSRV, we have added D. ciliaris to the list of uncultivated species within which Nigerian MSV-A isolates are possibly able to overwinter.


Subject(s)
Maize streak virus/classification , Maize streak virus/genetics , Zea mays/virology , DNA, Viral , Digitaria/virology , Eleusine/virology , Genome, Viral/genetics , Nigeria , Plant Diseases/virology , Setaria Plant/virology
10.
J Virol ; 88(14): 7843-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24789787

ABSTRACT

Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Subject(s)
Adaptation, Biological , Homologous Recombination , Maize streak virus/genetics , Microbial Viability , DNA, Viral/chemistry , DNA, Viral/genetics , Evolution, Molecular , Maize streak virus/physiology , Plant Diseases/virology , Sequence Analysis, DNA , Zea mays/virology
11.
Virology ; 442(2): 173-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23679984

ABSTRACT

The plant-infecting mastreviruses (family Geminiviridae) express two distinct replication-initiator proteins, Rep and RepA. Although RepA is essential for systemic infectivity, little is known about its precise function. We therefore investigated its role in replication using 2D-gel electrophoresis to discriminate the replicative forms of Maize streak virus (MSV) mutants that either fail to express RepA (RepA(-)), or express RepA that is unable to bind the plant retinoblastoma related protein, pRBR. Whereas amounts of viral DNA were reduced in two pRBR-binding deficient RepA mutants, their repertoires of replicative forms changed only slightly. While a complete lack of RepA expression was also associated with reduced viral DNA titres, the only traces of replicative intermediates of RepA(-) viruses were those indicative of recombination-dependent replication. We conclude that in MSV, RepA, but not RepA-pRBR binding, is necessary for single-stranded DNA production and efficient rolling circle replication.


Subject(s)
DNA Helicases/metabolism , Maize streak virus/physiology , Trans-Activators/metabolism , Viral Proteins/metabolism , Virus Replication , Cells, Cultured , DNA Helicases/genetics , Electrophoresis, Gel, Two-Dimensional , Maize streak virus/genetics , Sequence Deletion , Trans-Activators/genetics , Viral Load , Viral Proteins/genetics , Zea mays/virology
12.
BMC Evol Biol ; 12: 252, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23268599

ABSTRACT

BACKGROUND: Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). RESULTS: Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we observed similar strand specific mutation biases arising predominantly from imbalances in the complementary mutations G → T: C → A. CONCLUSIONS: While our results suggest that recombination does not strongly influence mutation rates in MSV, they indicate that high geminivirus mutation rates are at least partially attributable to increased susceptibility of all geminivirus genomes to oxidative damage while in a single stranded state.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Mutation Rate , Recombination, Genetic , Adaptation, Physiological/genetics , Base Sequence , Geminiviridae/classification , Geminiviridae/genetics , Genome, Viral/genetics , Genotype , Molecular Sequence Data , Mutation , Plant Diseases/virology , Selection, Genetic , Sequence Homology, Nucleic Acid , Species Specificity , Zea mays/virology
13.
BMC Evol Biol ; 11: 350, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22136133

ABSTRACT

BACKGROUND: Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. RESULTS: Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV-MatA. Although the MSV-sensitive maize genotype gave rise to the greatest variety of recombinants, the measured fitness of each of these recombinants correlated with their similarity to MSV-MatA. CONCLUSIONS: The mechanistic predispositions of different MSV genomic regions to recombination can strongly influence the accessibility of high-fitness MSV recombinants. The frequency with which the fittest recombinant MSV genomes arise also correlates directly with the escalating selection pressures imposed by increasingly MSV-resistant maize hosts.


Subject(s)
Evolution, Molecular , Genome, Viral , Maize streak virus/genetics , Recombination, Genetic , Zea mays/virology , Adaptation, Biological/genetics , DNA, Viral/genetics , Disease Resistance/genetics , Genetic Fitness , Genotype , Plant Diseases/genetics , Plant Diseases/virology , Zea mays/genetics
14.
J Virol ; 85(18): 9623-36, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715477

ABSTRACT

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeography , Plant Diseases/virology , Zea mays/virology , Africa , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Maize streak virus/classification , Molecular Epidemiology , Molecular Sequence Data , Sequence Analysis, DNA
15.
J Gen Virol ; 92(Pt 10): 2458-2465, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21653753

ABSTRACT

Maize streak disease, caused by the A strain of the African endemic geminivirus, maize streak mastrevirus (MSV-A), threatens the food security and livelihoods of subsistence farmers throughout sub-Saharan Africa. Using a well-established transient expression assay, this study investigated the potential of a spliceable-intron hairpin RNA (hpRNA) approach to interfere with MSV replication. Two strategies were explored: (i) an inverted repeat of a 662 bp region of the MSV replication-associated protein gene (rep), which is essential for virus replication and is therefore a good target for post-transcriptional gene silencing; and (ii) an inverted repeat of the viral long intergenic region (LIR), considered for its potential to trigger transcriptional silencing of the viral promoter region. After co-bombardment of cultured maize cells with each construct and an infectious partial dimer of the cognate virus genome (MSV-Kom), followed by viral replicative-form-specific PCR, it was clear that, whilst the hairpin rep construct (pHPrepΔI(662)) completely inhibited MSV replication, the LIR hairpin construct was ineffective in this regard. In addition, pHPrepΔI(662) inhibited or reduced replication of six MSV-A genotypes representing the entire breadth of known MSV-A diversity. Further investigation by real-time PCR revealed that the pHPrepΔI(662) inverted repeat was 22-fold more effective at reducing virus replication than a construct containing the sense copy, whilst the antisense copy had no effect on replication when compared with the wild type. This is the first indication that an hpRNA strategy targeting MSV rep has the potential to protect transgenic maize against diverse MSV-A genotypes found throughout sub-Saharan Africa.


Subject(s)
Gene Silencing , Maize streak virus/physiology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Virus Replication , Geminiviridae , Maize streak virus/genetics , Plant Diseases/virology , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Transients and Migrants
16.
Mol Plant Pathol ; 11(3): 409-17, 2010 May.
Article in English | MEDLINE | ID: mdl-20447288

ABSTRACT

Obligate sedentary endoparasitic nematodes, such as the root-knot and cyst nematodes, elicit the differentiation of specialized nematode nurse or feeding cells [nematode feeding sites (NFS), giant cells and syncytia, respectively]. During NFS differentiation, marked changes in cell cycle progression occur, partly similar to those induced by some geminiviruses. In this work, we describe the activation of V-sense promoters from the Maize streak virus (MSV) and Wheat dwarf virus (WDV) in NFS formed by root-knot and cyst nematodes. Both promoters were transiently active in microinjection experiments. In tobacco and Arabidopsis transgenic lines carrying promoter-beta-glucuronidase fusions, the MSV V-sense promoter was activated in the vascular tissues of aerial plant parts, primarily leaf and cotyledon phloem tissue and some floral structures. Interestingly, in roots, promoter activation was restricted to syncytia and giant cells tested with four different nematode populations, but undetectable in the rest of the root system. As the activity of the promoter in transgenic rootstocks should be restricted to NFS only, the MSV promoter may have utility in engineering grafted crops for nematode control. Therefore, this study represents a step in the provision of some of the much needed additional data on promoters with restricted activation in NFS useful in biotechnological nematode control strategies.


Subject(s)
Feeding Behavior/physiology , Geminiviridae/genetics , Gene Expression Regulation, Viral , Nematoda/physiology , Plant Roots/parasitology , Plant Roots/virology , Promoter Regions, Genetic , Animals , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis/virology , Glucuronidase/metabolism , Immunohistochemistry , Maize streak virus/genetics , Microinjections , Plants, Genetically Modified , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/parasitology , Nicotiana/virology
17.
Mol Plant Pathol ; 11(1): 1-12, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20078771

ABSTRACT

UNLABELLED: Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. TAXONOMY: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. PHYSICAL PROPERTIES: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. DISEASE SYMPTOMS: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. DISEASE CONTROL: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. USEFUL WEBSITES: http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.


Subject(s)
Maize streak virus/pathogenicity , Biological Evolution , Genes, Viral , Genetic Variation , Maize streak virus/genetics , Zea mays/virology
18.
J Gen Virol ; 91(Pt 4): 1077-81, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20032206

ABSTRACT

Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.


Subject(s)
Maize streak virus/physiology , Virus Replication , Zea mays/virology , Maize streak virus/genetics , Plant Leaves/growth & development , Polymerase Chain Reaction , Recombination, Genetic , Zea mays/growth & development
19.
Arch Virol ; 154(10): 1699-703, 2009.
Article in English | MEDLINE | ID: mdl-19756359

ABSTRACT

The sugarcane-infecting streak viruses (SISVs) are a diverse collection of mastreviruses (family Geminiviridae) within the African streak virus group. Four SISVs have currently been described, including the well-characterized maize streak virus. Here, we present a full annotated sequence record of an isolate of a new SISV species, Saccharum streak virus (SacSV), isolated in South Africa. The isolate shares less than 66% identity with any other mastrevirus, but is most closely related to Urochloa streak virus (USV), a mastrevirus from Nigeria that has until now been an outlier in the African streak virus phylogenetic tree. As with USV, the SacSV isolate we have characterized bears no obvious evidence of inter-species recombination.


Subject(s)
Geminiviridae/genetics , Saccharum/virology , DNA, Viral/genetics , Geminiviridae/isolation & purification , Genome, Viral , Maize streak virus/genetics , Molecular Sequence Data , Phylogeny , South Africa
20.
J Gen Virol ; 90(Pt 12): 3066-3074, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19692547

ABSTRACT

Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800 s, approximately 20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500 s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/pathogenicity , Plant Diseases/virology , Recombination, Genetic , Zea mays/virology , Bayes Theorem , Genome, Viral , Maize streak virus/classification , Molecular Sequence Data , Poaceae/virology , Sequence Analysis, DNA , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...