Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Sci Rep ; 14(1): 13669, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871839

ABSTRACT

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Subject(s)
Anopheles , Mosquito Vectors , Ethiopia/epidemiology , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity , Plasmodium vivax/physiology , Sporozoites , Mosquito Control/methods , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Female
2.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865344

ABSTRACT

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Protozoan Proteins , Animals , Mice , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Humans , Malaria, Vivax/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Female , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Malaria/transmission , Malaria/prevention & control , Malaria/parasitology , Malaria/immunology , Mice, Inbred BALB C
3.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
4.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Malaria, Vivax , Mathematical Concepts , Mosquito Vectors , Plasmodium vivax , Superinfection , Humans , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Superinfection/immunology , Superinfection/transmission , Superinfection/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Disease Reservoirs/parasitology , Models, Biological , Computer Simulation , Anopheles/parasitology , Anopheles/immunology
5.
Am J Trop Med Hyg ; 110(6): 1091-1099, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38626749

ABSTRACT

Plasmodium parasites replicate asexually in human hosts. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear which proportion of Plasmodium vivax infections in Duffy-negative populations carries gametocytes. We determined the prevalence and characteristics of P. vivax gametocytes in Duffy-positive and -negative populations across broad regions of Ethiopia. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of Plasmodium species and Duffy blood group genotyping was done using SYBR green and the Taqman quantitative polymerase chain reaction method. Of the 447 febrile patients who were shown to be P. vivax smear positive, 414 (92.6%) were confirmed by molecular screening as P. vivax and 16 (3.9%) of them were from Duffy-negative individuals. Of these, 5 of 16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly greater than that in Duffy-negative samples. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negative individuals were commonly associated with low parasitemia, some of these infections were shown to have relatively high parasitemia and may represent a prominent erythrocyte invasion capability of P. vivax, and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of P. vivax malaria in Africa.


Subject(s)
Duffy Blood-Group System , Malaria, Vivax , Plasmodium vivax , Humans , Ethiopia/epidemiology , Plasmodium vivax/genetics , Duffy Blood-Group System/genetics , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/blood , Male , Adult , Adolescent , Female , Prevalence , Young Adult , Child , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Child, Preschool , Genotype , Cross-Sectional Studies
6.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490637

ABSTRACT

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Ethiopia/epidemiology , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Humans , Longitudinal Studies , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Animals , Plasmodium vivax/isolation & purification , Plasmodium vivax/physiology , Plasmodium falciparum/isolation & purification , Anopheles/parasitology , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Asymptomatic Infections/epidemiology , Mosquito Vectors/parasitology , Middle Aged
7.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38408353

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/genetics , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria, Vivax/transmission , Malaria, Vivax/prevention & control , Malaria, Vivax/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Female , Antigens, Surface
8.
Science ; 378(6620): 582-583, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356129
9.
Ecology ; 103(8): e3685, 2022 08.
Article in English | MEDLINE | ID: mdl-35315521

ABSTRACT

Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector-borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector-borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites, Plasmodium falciparum and Plasmodium vivax, by two malaria vector species, Anopheles gambiae and Anopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito-parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carrying P. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g., A. stephensi and A. gambiae both with P. falciparum). Using prevalence data, we show that the transmission suitability metric ST$$ S(T) $$ calculated from our mechanistic model is consistent with observed P. falciparum prevalence in Africa and Asia but is equivocal for P. vivax prevalence in Asia, and inconsistent with P. vivax prevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Temperature , Animals , Anopheles/parasitology , Anopheles/physiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Mosquito Vectors
10.
Sci Rep ; 12(1): 1411, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082339

ABSTRACT

Globally, malaria is the major public health disease caused by plasmodium species and transmitted by the bite of the female anopheles mosquito. Assessment of the trend of malaria prevalence is important in the control and prevention of the disease. Therefore, the objective of this study was to assess the six year trend of malaria prevalence at the University of Gondar Comprehensive Specialized Hospital, northwest Ethiopia, from 2014 to 2019. A retrospective laboratory registration logbook review study was conducted on the malaria blood film examination results at the University of Gondar Comprehensive Specialized Hospital. The data was collected by using a data extraction tool and entered into SPSS version 20 for analysis. Descriptive statistics were used to summarize the socio-demographic characteristics of study participants and presented by graphs, tables and texts. The binary logistic regression was also used to test the association the trend of malaria prevalence and different factors like sex, age, year, and season. From a total of 17,500 malaria blood film examinations, 1341 (7.7%) were confirmed for malaria parasites. Of the confirmed malaria cases, 47.2%, 45.6% and 7.2% were P. vivax, P. falciparum and mixed infection, respectively. The proportion of P. vivax was the predominant species in the first three study years (2014-2016) and P. falciparum became the predominant species in the last three study years (2017-2019). The odds of malaria prevalence was lower by 68%, 60% and 69% in the year 2017, 2018 and 2019 compared to 2014, respectively. It was also 1.41 times higher in males than in females. Moreover, the odds of malaria prevalence were 1.60, 1.64, 2.45 and 1.82 times higher in the age group of < 5, 5-14, 15-24 and 25-54 years old compared to the older age groups (> 54 years old), respectively. Even there was a significant declining in prevalence trend; malaria is still a major public health problem. The study showed that there was high seasonal fluctuation from year to year. Moreover, males and the younger age groups were more affected than females and old age groups, respectively. Therefore, malaria prevention and control activities should be strengthened and require extra efforts by considering these variability.


Subject(s)
Coinfection/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/pathogenicity , Plasmodium vivax/pathogenicity , Adolescent , Adult , Aged , Animals , Anopheles/parasitology , Child , Child, Preschool , Coinfection/parasitology , Coinfection/transmission , Ethiopia/epidemiology , Female , Humans , Infant , Logistic Models , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Male , Middle Aged , Mosquito Vectors/parasitology , Plasmodium falciparum/growth & development , Plasmodium vivax/growth & development , Prevalence , Retrospective Studies , Seasons , Sex Factors
11.
Parasitol Int ; 87: 102497, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34748969

ABSTRACT

Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.


Subject(s)
Malaria, Vivax/transmission , Plasmodium vivax/physiology , Animals , Anopheles/parasitology , Female , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Mosquito Vectors/parasitology , Parasitemia/parasitology , Parasitemia/transmission
12.
Parasitol Int ; 87: 102507, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34781012

ABSTRACT

There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.


Subject(s)
Ape Diseases/parasitology , Malaria, Vivax/parasitology , Pan troglodytes/parasitology , Phylogeny , Plasmodium vivax/genetics , Africa , Animals , Ape Diseases/transmission , Asia , DNA, Protozoan/blood , DNA, Protozoan/isolation & purification , Feces/parasitology , Humans , Malaria, Vivax/transmission , Plasmodium vivax/classification
13.
Parasitol Int ; 87: 102492, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34728377

ABSTRACT

Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Fluorescent Antibody Technique , Humans , Malaria, Vivax/transmission
14.
Parasitol Int ; 87: 102526, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34896312

ABSTRACT

Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.


Subject(s)
Disease Reservoirs/parasitology , Malaria, Vivax , Plasmodium vivax/physiology , Humans , Liver/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Plasmodium vivax/isolation & purification
15.
Parasitol Int ; 87: 102525, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34896614

ABSTRACT

Existing control measures have significantly reduced malaria morbidity and mortality in the last two decades, although these reductions are now stalling. Significant efforts have been undertaken to develop malaria vaccines. Recently, extensive progress in malaria vaccine development has been made for Plasmodium falciparum. To date, only the RTS,S/AS01 vaccine has been tested in Phase 3 clinical trials and is now under implementation, despite modest efficacy. Therefore, the development of a malaria transmission-blocking vaccine (TBV) will be essential for malaria elimination. Only a limited number of TBVs have reached pre-clinical or clinical development with several major challenges impeding their development, including low immunogenicity in humans. TBV development efforts against P. vivax, the second major cause of malaria morbidity, lag far behind those for P. falciparum. In this review we summarize the latest progress, challenges and innovations in P. vivax TBV research and discuss how to accelerate its development.


Subject(s)
Malaria Vaccines , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Plasmodium falciparum/immunology , Vaccine Development
16.
PLoS Negl Trop Dis ; 15(10): e0009077, 2021 10.
Article in English | MEDLINE | ID: mdl-34714821

ABSTRACT

Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.


Subject(s)
Anopheles/parasitology , Malaria, Vivax/transmission , Plasmodium vivax/physiology , Animals , Anopheles/physiology , Asymptomatic Infections/epidemiology , Blood/parasitology , Brazil/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium vivax/genetics , Seasons
17.
Parasit Vectors ; 14(1): 407, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399829

ABSTRACT

BACKGROUND: Plasmodium vivax transmission-blocking vaccines (TBVs) are receiving increasing attention. Based on excellent transmission-blocking activities of the PbPH (PBANKA_0417200) and PbSOP26 (PBANKA_1457700) antigens in Plasmodium berghei, their orthologs in P. vivax, PVX_098655 (PvPH) and PVX_101120 (PvSOP26), were selected for the evaluation of their potential as TBVs. METHODS: Fragments of PvPH (amino acids 22-304) and PvSOP26 (amino acids 30-272) were expressed in the yeast expression system. The recombinant proteins were used to immunize mice to obtain antisera. The transmission-reducing activities of these antisera were evaluated using the direct membrane feeding assay (DMFA) using Anopheles dirus mosquitoes and P. vivax clinical isolates. RESULTS: The recombinant proteins PvPH and PvSOP26 induced robust antibody responses in mice. The DMFA showed that the anti-PvSOP26 sera significantly reduced oocyst densities by 92.0 and 84.1% in two parasite isolates, respectively, whereas the anti-PvPH sera did not show evident transmission-reducing activity. The variation in the DMFA results was unlikely due to the genetic polymorphisms of the two genes since their respective sequences were identical in the clinical P. vivax isolates. CONCLUSION: PvSOP26 could be a promising TBV candidate for P. vivax, which warrants further evaluation.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Animals , Female , Humans , Immunogenicity, Vaccine , Malaria Vaccines/genetics , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Yeasts/genetics
18.
PLoS Negl Trop Dis ; 15(8): e0009672, 2021 08.
Article in English | MEDLINE | ID: mdl-34449764

ABSTRACT

BACKGROUND: Understanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission. METHODOLOGY/PRINCIPAL FINDINGS: Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44-94% for P. falciparum and from 23-72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37-100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398). CONCLUSIONS/SIGNIFICANCE: Interventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling.


Subject(s)
Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Asymptomatic Diseases , Brazil/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Male , Papua New Guinea/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/physiology , Plasmodium vivax/genetics , Plasmodium vivax/growth & development , Plasmodium vivax/physiology , Thailand/epidemiology , Young Adult
19.
Sci Rep ; 11(1): 14495, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262054

ABSTRACT

Individual-level geographic information about malaria cases, such as the GPS coordinates of residence or health facility, is often collected as part of surveillance in near-elimination settings, but could be more effectively utilised to infer transmission dynamics, in conjunction with additional information such as symptom onset time and genetic distance. However, in the absence of data about the flow of parasites between populations, the spatial scale of malaria transmission is often not clear. As a result, it is important to understand the impact of varying assumptions about the spatial scale of transmission on key metrics of malaria transmission, such as reproduction numbers. We developed a method which allows the flexible integration of distance metrics (such as Euclidian distance, genetic distance or accessibility matrices) with temporal information into a single inference framework to infer malaria reproduction numbers. Twelve scenarios were defined, representing different assumptions about the likelihood of transmission occurring over different geographic distances and likelihood of missing infections (as well as high and low amounts of uncertainty in this estimate). These scenarios were applied to four individual level datasets from malaria eliminating contexts to estimate individual reproduction numbers and how they varied over space and time. Model comparison suggested that including spatial information improved models as measured by second order AIC (ΔAICc), compared to time only results. Across scenarios and across datasets, including spatial information tended to increase the seasonality of temporal patterns in reproduction numbers and reduced noise in the temporal distribution of reproduction numbers. The best performing parameterisations assumed long-range transmission (> 200 km) was possible. Our approach is flexible and provides the potential to incorporate other sources of information which can be converted into distance or adjacency matrices such as travel times or molecular markers.


Subject(s)
Basic Reproduction Number , Malaria/transmission , China/epidemiology , El Salvador/epidemiology , Eswatini/epidemiology , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Travel
20.
Parasitol Int ; 84: 102415, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34216801

ABSTRACT

The recent World Malaria report shows that progress in malaria elimination has stalled. Current data acquisition by NMCPs depend on passive case detection and clinical reports focused mainly on Plasmodium falciparum (Pf). In recent times, several countries in sub-Saharan Africa have reported cases of Plasmodium vivax (Pv) with a considerable number being Duffy negative. The burden of Pv and Plasmodium ovale (Po) appear to be more than acknowledged. Similarly, the contribution of asymptomatic malaria in transmission is hardly considered by NMCPs in Africa. Inclusion of these as targets in malaria elimination agenda is necessary to achieve elimination goal, as these harbor hypnozoites. The Pan African Vivax and Ovale Network (PAVON) is a new consortium of African Scientists working in Africa on the transmission profile of Pv and Po. The group collaborates with African NMCPs to train in Plasmodium molecular diagnostics, microscopy, and interpretation of molecular data from active surveys to translate into policy. Details of the mission, rational and modus operandi of the group are outlined.


Subject(s)
Malaria , Plasmodium ovale , Plasmodium vivax , Africa , Asymptomatic Infections/epidemiology , Malaria/epidemiology , Malaria/parasitology , Malaria/prevention & control , Malaria/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...