Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 107(4): 629-37, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21303784

ABSTRACT

BACKGROUND AND AIMS: Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. METHODS: Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. KEY RESULTS: The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. CONCLUSIONS: A novel plant-animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds.


Subject(s)
Coleoptera/physiology , Seed Dispersal/physiology , Animals , Feeding Behavior/physiology , Fruit/physiology , Germination , Malvaceae/embryology , Time Factors
2.
Plant Biol (Stuttg) ; 7(5): 533-40, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16163619

ABSTRACT

Apomixis and adventitious polyembryony have been reported for several species of Bombacoideae, including Eriotheca pubescens, a tree species of the Neotropical savanna (Cerrado) areas in Brazil. However, the origin of polyembryonic seeds and their importance for the reproduction of the species remained to be shown. Here, we analyzed the early embryology of this species to establish the apomictic origin of extranumerary embryos. We also observed the geographic distribution of polyembryony in E. pubescens, and tested if apomixis was related to the source of pollen (self or cross) and population density. Moreover, we tested if polyembryonic apomictic embryos would develop normally into seedlings. In the observed seed primordia, after a relatively long quiescent period, the zygote developed into a sexual embryo concurrently with adventitious apomictic embryos which developed from nucellus cells. Adventitious embryos develop faster than sexual ones and are morphologically similar, so that 44 days after anthesis it was virtually impossible to distinguish and trace the fate of the sexual embryo. Polyembryony is widely distributed in populations some 400 km distant, and only one strictly monoembryonic individual was observed during the study. The number of embryos per seed varied between fruits and individuals but was significantly higher in seeds from cross-pollinations than from selfs, although fruit and seed set after crosses were much lower than after selfs. Embryo development into seedlings depended on their weight at germination, but polyembryonic seeds germinated and produced up to seven seedlings per seed in greenhouse conditions. Adventitious embryony and apomictic seedlings would explain the mostly clonal populations suggested by molecular studies.


Subject(s)
Malvaceae/embryology , Reproduction, Asexual/physiology , Seeds/physiology , Germination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...