Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.937
Filter
1.
Med Sci Monit ; 30: e945315, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822579

ABSTRACT

Highly pathogenic avian influenza (HPAI) virus subtypes have been increasingly identified in poultry and wild birds since 2021. Between 2020-2023, 26 countries have reported that the H5N1 virus had infected more than 48 mammalian species. On 1 April 2024, a public health alert was issued in Texas when the first confirmed case of human infection with the H5N1 influenza virus was reported in a dairy worker. Cases of H5N1, clade 2.3.4.4b in dairy cows have been reported in several states in the US but were unexpected, even though H5N1 was previously identified in mammalian species, including cats, dogs, bears, foxes, tigers, coyotes, goats, and seals. On 29 April 2024, almost one month after the first reported cases of H5N1 infection in dairy cows, measures were to be implemented by the US Department of Agriculture (USDA) to prevent the progression of H5N1 viral transmission. This editorial summarizes what is currently known about the epidemiology, transmission, and surveillance of the HPAI virus of the H5N1 subtype in birds, mammals, and dairy cows, and why there are concerns regarding transmission to humans.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Cattle , Influenza A Virus, H5N1 Subtype/pathogenicity , Humans , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Birds/virology , Mammals/virology , Dairying
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230184, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768199

ABSTRACT

To benefit from group living, individuals need to maintain cohesion and coordinate their activities. Effective communication thus becomes critical, facilitating rapid coordination of behaviours and reducing consensus costs when group members have differing needs and information. In many bird and mammal species, collective decisions rely on acoustic signals in some contexts but on movement cues in others. Yet, to date, there is no clear conceptual framework that predicts when decisions should evolve to be based on acoustic signals versus movement cues. Here, we first review how acoustic signals and movement cues are used for coordinating activities. We then outline how information masking, discrimination ability (Weber's Law) and encoding limitations, as well as trade-offs between these, can identify which types of collective behaviours likely rely on acoustic signals or movement cues. Specifically, our framework proposes that behaviours involving the timing of events or expression of specific actions should rely more on acoustic signals, whereas decisions involving complex choices with multiple options (e.g. direction and destination) should generally use movement cues because sounds are more vulnerable to information masking and Weber's Law effects. We then discuss potential future avenues of enquiry, including multimodal communication and collective decision-making by mixed-species animal groups. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamic'.


Subject(s)
Cues , Decision Making , Animals , Birds/physiology , Movement , Animal Communication , Social Behavior , Mammals/physiology , Vocalization, Animal/physiology
3.
Sci Rep ; 14(1): 11297, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760353

ABSTRACT

A vast array of challenging environments are inhabited by mammals, such as living in confined spaces where oxygen levels are likely to be low. Species can exhibit adaptations in basal metabolic rate (BMR) to exploit such unique niches. In this study we use 801 species to determine the relationship between BMR and burrow use in mammals. We included pre-existing data for mammalian BMR and 16 life history traits. Overall, mammalian BMR is dictated primarily by environmental ambient temperature. There were no significant differences in BMR of terrestrial, semi-fossorial and fossorial mammals, suggesting that species occupying a subterranean niche do not exhibit baseline metabolic costs on account of their burrowing lifestyle. Fossorial mammals likely show instantaneous metabolic responses to low oxygen in tunnels, rather than exhibit adaptive long-term responses in their BMR.


Subject(s)
Basal Metabolism , Mammals , Animals , Mammals/metabolism , Ecosystem , Temperature , Oxygen/metabolism
4.
Naturwissenschaften ; 111(3): 30, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758365

ABSTRACT

Succession patterns of carrion insects on large mammal's carrion has been widely studied, notably to estimate the post-mortem interval in forensic investigations as accurately as possible. However, little attention has been paid to the carrion insects living inside these bones once a carcass is skeletonized. One very recent study documented flies emerging from pig carcasses, and only scarce authors reported the presence of other carrion insects taking advantage of the bone marrow. We, thus, aimed to (1) estimate the frequency of inner-bone space colonization by carrion insects, with particular attention to bone-skipper flies; (2) identify the insects living inside the carrion bones; and (3) determine whether or not carrion insects found within the bones can successfully exit the bones and complete their development. We extensively sampled 185 large mammals' bones collected from twelve vulture feeding stations and four isolated carcasses in southwest France and northern Spain. Sampled bones were opened, and the insects found inside were identified. For two bones, foramen, i.e., the holes providing a natural entrance and exit to the bone's inner cavity, was monitored with a camera to assess the insect's putative exit. We describe the entomofauna, i.e., the set of insect species, living within the bones, and illustrate insects' ability to exit the bones for their subsequent development and maturity. These results are discussed in the framework of carrion insect conservation and forensic entomology perspectives.


Subject(s)
Bone and Bones , Forensic Entomology , Insecta , Mammals , Animals , Bone and Bones/anatomy & histology , Insecta/physiology , France , Spain , Feeding Behavior/physiology , Diptera/physiology , Diptera/anatomy & histology
5.
PLoS One ; 19(5): e0294376, 2024.
Article in English | MEDLINE | ID: mdl-38739612

ABSTRACT

Understanding and mitigating the effects of anthropogenic climate change on species distributions requires the ability to track range shifts over time. This is particularly true for species occupying high-latitude regions, which are experiencing more extreme climate change than the rest of the world. In North America, the geographic ranges of many mammals reach their northernmost extent in Alaska, positioning this region at the leading edge of climate-induced distribution change. Over a decade has elapsed since the publication of the last spatial assessments of terrestrial mammals in the state. We compared public occurrence records against commonly referenced range maps to evaluate potential extralimital records and develop repeatable baseline range maps. We compared occurrence records from the Global Biodiversity Information Facility for 61 terrestrial mammal species native to mainland Alaska against a variety of range estimates (International Union for Conservation of Nature, Alaska Gap Analysis Project, and the published literature). We mapped extralimital records and calculated proportions of occurrences encompassed by range extents, measured mean direction and distance to prior range margins, evaluated predictive accuracy of published species models, and highlighted observations on federal lands in Alaska. Range comparisons identified 6,848 extralimital records for 39 of 61 (63.9%) terrestrial mainland Alaskan species. On average, 95.5% of Alaska Gap Analysis Project occurrence records and ranges were deemed accurate (i.e., > 90.0% correct) for 31 of 37 species, but overestimated extents for 13 species. The International Union for Conservation of Nature range maps encompassed 68.1% of occurrence records and were > 90% accurate for 17 of 39 species. Extralimital records represent either improved sampling and digitization or actual geographic range expansions. Here we provide new data-driven range maps, update standards for the archiving of museum-quality locational records and offer recommendations for mapping range changes for monitoring and conservation.


Subject(s)
Biodiversity , Climate Change , Mammals , Alaska , Animals , Mammals/physiology , Conservation of Natural Resources , Animal Distribution
6.
Proc Natl Acad Sci U S A ; 121(20): e2315921121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709928

ABSTRACT

The comparative studies of aging have established a negative correlation between Gompertz postnatal growth constant and maximum lifespan across mammalian species, but the underlying physiological mechanism remains unclear. This study shows that the Gompertz growth constant can be decomposed into two energetic components, mass-specific metabolic rate and the energetic cost of biosynthesis, and that after controlling the former as a confounder, the negative correlation between growth constant and lifespan still exists due to a 100-fold variation in the latter, revealing that the energetic cost of biosynthesis is a link between growth and longevity in mammals. Previously, the energetic cost of biosynthesis has been thought to be a constant across species and therefore was not considered a contributor to the variation in any life history traits, such as growth and lifespan. This study employs a recently proposed model based on energy conservation to explain the physiological effect of the variation in this energetic cost on the aging process and illustrates its role in linking growth and lifespan. The conventional life history theory suggested a tradeoff between growth and somatic maintenance, but the findings in this study suggest that allocating more energy to biosynthesis may enhance the somatic maintenance and extend lifespan and, hence, reveal a more complex nature of the tradeoff.


Subject(s)
Energy Metabolism , Longevity , Mammals , Animals , Mammals/metabolism , Models, Biological , Aging/metabolism
7.
Adv Emerg Nurs J ; 46(2): 118-125, 2024.
Article in English | MEDLINE | ID: mdl-38736096

ABSTRACT

Mammal bites account for over 5 million visits to Emergency Departments (EDs) annually. Nurse Practitioners (NPs) need to stay abreast of current guidelines, changes to antibiotic regimens that are now most effective, and understand in what circumstances collaboration with other specialists is indicated. It is not enough to care for the wound, itself, but rather understand in what presentations additional care may be needed despite the fact that there is no clear evidence at the time of evaluation of the need for advanced care. Additionally, NPs should understand what resources are available within their community for wound care that may exceed the scope and ability of the facility in which they practice. Health departments may need to be utilized in the care of ED patients who present with wounds that are suspicious for rabies. Finally understanding what constitutes a high, medium, and low risk bite will aide NPs in delivering optimal care within the communities they serve while also minimizing patient morbidity.


Subject(s)
Bites and Stings , Emergency Service, Hospital , Nurse Practitioners , Humans , Bites and Stings/therapy , Animals , Rabies/therapy , Rabies/prevention & control , Mammals , Emergency Nursing
8.
Sci Rep ; 14(1): 10668, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724593

ABSTRACT

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Subject(s)
Chickens , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/methods , Chickens/genetics , Mammals/genetics , Food Labeling , Food Analysis/methods , Birds/genetics , Meat/analysis , Polymerase Chain Reaction/methods
9.
Parasitol Res ; 123(5): 203, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705882

ABSTRACT

Functional signal in an interaction network is a phenomenon in which species resembling each other in their traits interact with similar partners. We tested the functional signal concept in realm-specific and regional flea-host networks from four biogeographic realms and asked whether the species composition of (a) host spectra and (b) flea assemblages is similar between functionally similar flea and host species, respectively. Analogously to testing for phylogenetic signal, we applied Mantel tests to investigate the correlation between flea or host functional distances calculated from functional dendrograms and dissimilarities in sets of interacting partners. In all realm-specific networks, functionally similar fleas tended to exploit similar hosts often belonging to the same genus, whereas functionally similar hosts tended to harbour similar fleas, again often belonging to the same genus. The strength of realm-specific functional signals and the frequency of detecting a significant functional signal in the regional networks differed between realms. The frequency of detecting a significant functional signal in the regional networks correlated positively with the network size for fleas and with the number of hosts in a network for hosts. A functional signal in the regional networks was more frequently found for hosts than for fleas. We discuss the mechanisms behind the functional signal in both fleas and their hosts, relate geographic functional signal patterns to the historic biogeography of fleas and conclude that functional signals in the species composition of host spectra for fleas and of flea assemblages for hosts result from the interplay of evolutionary and ecological processes.


Subject(s)
Host-Parasite Interactions , Mammals , Siphonaptera , Animals , Siphonaptera/physiology , Siphonaptera/classification , Mammals/parasitology , Flea Infestations/parasitology , Flea Infestations/veterinary , Phylogeny
10.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38700925

ABSTRACT

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Subject(s)
Paramyxoviridae Infections , Paramyxovirinae , Paramyxovirinae/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Mammals , China , Phylogeny , Genome, Viral , Host Specificity
11.
Hum Mol Genet ; 33(R1): R92-R99, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779768

ABSTRACT

The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.


Subject(s)
DNA, Mitochondrial , Gene Editing , Genome, Mitochondrial , Gene Editing/methods , Animals , Genome, Mitochondrial/genetics , Humans , DNA, Mitochondrial/genetics , CRISPR-Cas Systems , Mitochondria/genetics , Mammals/genetics , Mutation
12.
Glob Chang Biol ; 30(5): e17339, 2024 May.
Article in English | MEDLINE | ID: mdl-38804193

ABSTRACT

Climate plays a crucial role in shaping species distribution and evolution over time. Dr Vrba's Resource-Use hypothesis posited that zones at the extremes of temperature and precipitation conditions should host a greater number of climate specialist species than other zones because of higher historical fragmentation. Here, we tested this hypothesis by examining climate-induced fragmentation over the past 5 million years. Our findings revealed that, as stated by Vrba, the number of climate specialist species increases with historical regional climate fragmentation, whereas climate generalist species richness decreases. This relationship is approximately 40% stronger than the correlation between current climate and species richness for climate specialist species and 77% stronger for generalist species. These evidences suggest that the effect of climate historical fragmentation is more significant than that of current climate conditions in explaining mammal biogeography. These results provide empirical support for the role of historical climate fragmentation and physiography in shaping the distribution and evolution of life on Earth.


Subject(s)
Biodiversity , Climate Change , Mammals , Animals , Mammals/physiology , Climate , Animal Distribution , Phylogeography , Biological Evolution
13.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793671

ABSTRACT

The key postulate of the prion paradigm is that some proteins can take on unconventional conformations and pass these conformations to newly synthesized protein molecules with the same primary structure [...].


Subject(s)
Prions , Prions/metabolism , Prions/chemistry , Animals , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Prion Diseases/metabolism , Protein Conformation , Mammals/metabolism
14.
Sci Rep ; 14(1): 11754, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782990

ABSTRACT

Mammals maintain their body temperature, yet hibernators can temporarily lower their metabolic rate as an energy-saving strategy. It has been proposed that hibernators evolved independently from homeotherms, and it is possible that the convergent evolution of hibernation involved common genomic changes among hibernator-lineages. Since hibernation is a seasonal trait, the evolution of gene regulatory regions in response to changes in season may have been important for the acquisition of hibernation traits. High-frequency accumulation of mutations in conserved non-coding elements (CNEs) could, in principle, alter the expression of neighboring genes and thereby contribute to the acquisition of new traits. To address this possibility, we performed a comparative genomic analysis of mammals to identify accelerated CNEs commonly associated with hibernation. We found that accelerated CNEs are common to hibernator-lineages and could be involved with hibernation. We also found that common factors of genes that located near accelerated CNEs and are differentially expressed between normal and hibernation periods related to gene regulation and cell-fate determination. It suggests that the molecular mechanisms controlling hibernation have undergone convergent evolution. These results help broaden our understanding of the genetic adaptations that facilitated hibernation in mammals and may offer insights pertaining to stress responses and energy conservation.


Subject(s)
Conserved Sequence , Evolution, Molecular , Hibernation , Mammals , Animals , Hibernation/genetics , Mammals/genetics , Gene Expression Regulation , Genomics/methods , Biological Evolution
15.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786087

ABSTRACT

As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.


Subject(s)
Acrosome , Cytosol , Spermatozoa , Male , Hydrogen-Ion Concentration , Animals , Cytosol/metabolism , Humans , Acrosome/metabolism , Spermatozoa/metabolism , Mammals/metabolism , Acrosome Reaction
16.
Sci Rep ; 14(1): 11650, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38773187

ABSTRACT

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Subject(s)
Evolution, Molecular , Mammals , Neoplasms , Phylogeny , Animals , Mammals/genetics , Neoplasms/genetics , Humans , Selection, Genetic , Oncogenes/genetics , Genes, Tumor Suppressor , Genetic Predisposition to Disease
17.
Reprod Domest Anim ; 59(5): e14575, 2024 May.
Article in English | MEDLINE | ID: mdl-38715442

ABSTRACT

Cryopreservation is a valuable technique used to assist in the genetic improvement of cultured stocks and provide a continuous supply of good-quality semen for artificial insemination. Conserving semen by cryopreservation serves several purposes (e.g. artificial reproductive technologies and species conservation) and is also used in the clinical treatment of human infertility. However, the lifespan of cryopreserved semen is influenced by a range of factors, including storage temperature, cooling rate, chemical composition of the extender, the concentration of cryoprotectant, reactive oxygen species, seminal plasma composition and hygienic control. The choice of cryoprotectant is a vital factor underlying the success of animal semen cryopreservation. In this regard, extensive research has been carried out on various cryoprotectants, such as egg yolk, dimethyl sulfoxide, methanol, ethylene glycol and dimethylacetamide. Recent studies have also described the use of a range of new cryoprotectants for cryopreservation, including compounds of plant origin (soy), amino acids, antifreeze proteins, carbohydrates and cyclodextrins. Moreover, semen cryopreservation and storage require the use of liquid nitrogen or ultralow refrigeration methods for both long- and short-term storage. This review summarizes the general methods used for freezing semen and discusses the use of traditional and newly emerging cryoprotectants (permeable and non-permeable) for the cryopreservation of semen in selected fish and mammalian species.


Subject(s)
Cryopreservation , Cryoprotective Agents , Fishes , Mammals , Semen Preservation , Cryoprotective Agents/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Male , Fishes/physiology , Semen
18.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38752931

ABSTRACT

Peroxisomes are highly plastic organelles that are involved in several metabolic processes, including fatty acid oxidation, ether lipid synthesis and redox homeostasis. Their abundance and activity are dynamically regulated in response to nutrient availability and cellular stress. Damaged or superfluous peroxisomes are removed mainly by pexophagy, the selective autophagy of peroxisomes induced by ubiquitylation of peroxisomal membrane proteins or ubiquitin-independent processes. Dysregulated pexophagy impairs peroxisome homeostasis and has been linked to the development of various human diseases. Despite many recent insights into mammalian pexophagy, our understanding of this process is still limited compared to our understanding of pexophagy in yeast. In this Cell Science at a Glance article and the accompanying poster, we summarize current knowledge on the control of mammalian pexophagy and highlight which aspects require further attention. We also discuss the role of ubiquitylation in pexophagy and describe the ubiquitin machinery involved in regulating signals for the recruitment of phagophores to peroxisomes.


Subject(s)
Peroxisomes , Ubiquitination , Peroxisomes/metabolism , Humans , Animals , Autophagy , Macroautophagy , Mammals/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
19.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809707

ABSTRACT

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Subject(s)
Histone-Lysine N-Methyltransferase , Recombination, Genetic , Animals , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mammals/genetics , CpG Islands/genetics , Eutheria/genetics , Mice , Female , Gene Conversion , Evolution, Molecular
20.
Science ; 384(6699): 1007-1012, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815022

ABSTRACT

The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.


Subject(s)
Extinction, Biological , Fossils , Genetic Speciation , Mammals , Phylogeny , Animals , Mammals/genetics , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL
...