Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.106
Filter
1.
Hum Mol Genet ; 33(R1): R92-R99, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779768

ABSTRACT

The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.


Subject(s)
DNA, Mitochondrial , Gene Editing , Genome, Mitochondrial , Gene Editing/methods , Animals , Genome, Mitochondrial/genetics , Humans , DNA, Mitochondrial/genetics , CRISPR-Cas Systems , Mitochondria/genetics , Mammals/genetics , Mutation
2.
Sci Rep ; 14(1): 11650, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38773187

ABSTRACT

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Subject(s)
Evolution, Molecular , Mammals , Neoplasms , Phylogeny , Animals , Mammals/genetics , Neoplasms/genetics , Humans , Selection, Genetic , Oncogenes/genetics , Genes, Tumor Suppressor , Genetic Predisposition to Disease
3.
Sci Rep ; 14(1): 11754, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782990

ABSTRACT

Mammals maintain their body temperature, yet hibernators can temporarily lower their metabolic rate as an energy-saving strategy. It has been proposed that hibernators evolved independently from homeotherms, and it is possible that the convergent evolution of hibernation involved common genomic changes among hibernator-lineages. Since hibernation is a seasonal trait, the evolution of gene regulatory regions in response to changes in season may have been important for the acquisition of hibernation traits. High-frequency accumulation of mutations in conserved non-coding elements (CNEs) could, in principle, alter the expression of neighboring genes and thereby contribute to the acquisition of new traits. To address this possibility, we performed a comparative genomic analysis of mammals to identify accelerated CNEs commonly associated with hibernation. We found that accelerated CNEs are common to hibernator-lineages and could be involved with hibernation. We also found that common factors of genes that located near accelerated CNEs and are differentially expressed between normal and hibernation periods related to gene regulation and cell-fate determination. It suggests that the molecular mechanisms controlling hibernation have undergone convergent evolution. These results help broaden our understanding of the genetic adaptations that facilitated hibernation in mammals and may offer insights pertaining to stress responses and energy conservation.


Subject(s)
Conserved Sequence , Evolution, Molecular , Hibernation , Mammals , Animals , Hibernation/genetics , Mammals/genetics , Gene Expression Regulation , Genomics/methods , Biological Evolution
4.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38691389

ABSTRACT

Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.


Subject(s)
Gene Expression Regulation, Developmental , Spermatogenesis , Animals , Humans , Male , Mammals/genetics
5.
Sci Rep ; 14(1): 10668, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724593

ABSTRACT

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Subject(s)
Chickens , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/methods , Chickens/genetics , Mammals/genetics , Food Labeling , Food Analysis/methods , Birds/genetics , Meat/analysis , Polymerase Chain Reaction/methods
6.
Sci Rep ; 14(1): 8715, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622248

ABSTRACT

Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.


Subject(s)
Ecosystem , Microbiota , Animals , DNA, Bacterial/genetics , DNA/genetics , Feces , Soil , RNA, Ribosomal, 16S/genetics , Mammals/genetics
7.
Biochemistry (Mosc) ; 89(2): 313-321, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622098

ABSTRACT

AgeMeta is a database that provides systemic and quantitative description of mammalian aging at the level of gene expression. It encompasses transcriptomic changes with age across various tissues of humans, mice, and rats, based on a comprehensive meta-analysis of 122 publicly available gene expression datasets from 26 studies. AgeMeta provides an intuitive visual interface for quantification of aging-associated transcriptomics at the level of individual genes and functional groups of genes, allowing easy comparison among various species and tissues. Additionally, all the data in the database can be downloaded and analyzed independently. Overall, this work contributes to the understanding of the complex network of biological processes underlying mammalian aging and supports future advancements in this field. AgeMeta is freely available at: https://age-meta.com/.


Subject(s)
Gene Expression Profiling , Transcriptome , Rats , Mice , Humans , Animals , Aging/genetics , Databases, Factual , Mammals/genetics
8.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652744

ABSTRACT

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Subject(s)
Body Weight , Eating , Enhancer Elements, Genetic , Hypothalamus , Pro-Opiomelanocortin , Zebrafish , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Mice , Hypothalamus/metabolism , Eating/genetics , Eating/physiology , Zebrafish/genetics , Zebrafish/metabolism , Female , Male , Mice, Transgenic , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Mammals/metabolism , Mammals/genetics
9.
Epigenetics Chromatin ; 17(1): 11, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671530

ABSTRACT

BACKGROUND: In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS: Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5­hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS: Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.


Subject(s)
Chickens , DNA Methylation , Epigenesis, Genetic , Germ Cells , Histones , Animals , Histones/metabolism , Germ Cells/metabolism , Chick Embryo , Protein Processing, Post-Translational , Mammals/genetics , Mice , Histone Code
10.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625943

ABSTRACT

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Subject(s)
Circadian Rhythm , Period Circadian Proteins , Animals , Circadian Rhythm/physiology , Temperature , Period Circadian Proteins/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , RNA/metabolism , Suprachiasmatic Nucleus/metabolism , Mammals/genetics
11.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38656974

ABSTRACT

MOTIVATION: Epigenetic clocks are prediction methods based on DNA methylation levels in a given species or set of species. Defined as multivariate regression models, these DNA methylation-based biomarkers of age or mortality risk are useful in species conservation efforts and in preclinical studies. RESULTS: We present an R package called MammalMethylClock for the construction, assessment, and application of epigenetic clocks in different mammalian species. The R package includes the utility for implementing pre-existing mammalian clocks from the Mammalian Methylation Consortium. AVAILABILITY AND IMPLEMENTATION: The source code and documentation manual for MammalMethylClock, and clock coefficient .csv files that are included within this software package, can be found on Zenodo at https://doi.org/10.5281/zenodo.10971037.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Mammals , Software , Animals , Mammals/genetics , Humans , Epigenomics/methods
12.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613250

ABSTRACT

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Subject(s)
Amphibians , Conservation of Natural Resources , Genetics, Population , Mammals , Population Density , Animals , Amphibians/genetics , Amphibians/classification , Mammals/genetics , Mammals/classification , Gene Flow , Birds/genetics , Birds/classification , Humans , Inbreeding , Genetic Drift , Plants/genetics , Plants/classification , Human Activities
14.
Cancer Genomics Proteomics ; 21(3): 238-251, 2024.
Article in English | MEDLINE | ID: mdl-38670588

ABSTRACT

BACKGROUND/AIM: Dynamic DNA sequences (i.e. sequences capable of forming hairpins, G-quadruplexes, i-motifs, and triple helices) can cause replication stress and associated mutations. One example of such a sequence occurs in the RACK7 gene in human DNA. Since this sequence forms i-motif structures at neutral pH that cause replication stress and result in spontaneous deletions in prostate cancer cells, our initial aim was to determine its potential utility as a biomarker of prostate cancer. MATERIALS AND METHODS: We cloned and sequenced the region in RACK7 where i-motif deletions often occur in DNA obtained from eight individuals. Expressed prostatic secretions were obtained from three individuals with a positive biopsy for prostate cancer and two with individuals with a negative biopsy for prostate cancer. Peripheral blood specimens were obtained from two control healthy bone marrow donors and a marrow specimen was obtained from a third healthy marrow donor. Follow-up computer searches of the genomes of 74 mammalian species available at the NCBI ftp site or frequencies of 6 dynamic sequences known to produce mutations or replication stress using a program written in Mathematica were subsequently performed. RESULTS: Deletions were found in RACK7 in specimens from both older normal adults, as well as specimens from older patients with cancer, but not in the youngest normal adult. The deletions appeared to show a weak trend to increasing frequency with patient age. This suggested that endogenous mutations associated with dynamic sequences might accumulate during aging and might serve as biomarkers of biological age rather than direct biomarkers of cancer. To test that hypothesis, we asked whether or not the genomic frequencies of several dynamic sequences known to produce replication stress or mutations in human DNA were inversely correlated with maximum lifespan in mammals. CONCLUSION: Our results confirm this correlation for six dynamic sequences in 74 mammalian genomes studied, thereby suggesting that spontaneously induced replication stress and mutations linked to dynamic sequence frequency may limit lifespan by limiting genome stability.


Subject(s)
Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Aged , Middle Aged , Longevity/genetics , Adult , Mammals/genetics , Mutation , Receptors, Cell Surface/genetics
15.
Nat Commun ; 15(1): 3311, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632224

ABSTRACT

Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.


Subject(s)
Gene Expression Regulation , Genes, Synthetic , Animals , Transcription Factors/genetics , Gene Regulatory Networks , Promoter Regions, Genetic , Mammals/genetics , CRISPR-Cas Systems
16.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561749

ABSTRACT

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Humans , Animals, Genetically Modified/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Dimerization , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Mammals/genetics
17.
Nihon Ronen Igakkai Zasshi ; 61(1): 1-12, 2024.
Article in Japanese | MEDLINE | ID: mdl-38583963

ABSTRACT

The epigenome can adequately regulate the on/off states of genes in response to external environmental factors and stress. In recent years, it has been observed that the epigenome, which is modulated through DNA methylation, histone modifications, and chromatin remodeling, changes with age. Alterations in the epigenome lead to the loss of cell-specific epigenome/identity, which in turn triggers a decline in tissue function. In mammals, postnatal epigenomic variations are not only caused by metabolic diseases, such as diabetes or DNA damage, but also by social stress and infectious diseases. Unlike Genome-Wide Association Studies (GWAS), dynamically changing epigenomes, along with their cellular roles, need to be established as objective biomarkers in conjunction with various biological signals, such as walking speed, brain waves, and clinical data. The biological age/aging clock, determined by methylated DNA, has attracted attention, and calorie restriction not only slows the progression of aging, but also seems to suppress it. However, as indicated by gene expression analysis in aging mice, aging is not a linear model, but is represented by nonlinear dynamic changes. Consequently, the development of experimental models and analytical methods that enhance temporal resolution through time-series analysis, tailored to spatial resolution, such as cell distribution and organ specificity, is progressing. Moreover, in recent years, in addition to anti-aging efforts targeting epigenomic variations, global attention has increasingly focused on research and development aimed at rejuvenating treatments, thus leading to the birth of many biotech companies. Aging Hallmarks such as inflammation, stem cells, metabolism, genomic instability, and autophagy, interact closely with the epigenome. Various postnatal and reversible epigenomic controls of aging, including Yamanaka factors (OKSM and OSK), are now entering a new phase. In the future, the development of aging control using diverse modalities, such as mRNA, artificial peptides, and genome editing, is expected, along with an improved molecular understanding of aging and identification of useful biomarkers.


Subject(s)
Epigenome , Histones , Animals , Mice , Histones/genetics , Histones/metabolism , Genome-Wide Association Study , Biomarkers , Aging/genetics , Mammals/genetics , Mammals/metabolism
18.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557192

ABSTRACT

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Subject(s)
Adenosine Triphosphatases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Rats , Mice , Animals , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Line , Chromatin , Mammals/genetics , Androgen Receptor Antagonists , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
19.
PLoS One ; 19(4): e0296127, 2024.
Article in English | MEDLINE | ID: mdl-38626020

ABSTRACT

Lyme disease is the most prevalent vector-borne infectious disease in Europe and the USA. Borrelia burgdorferi, as the causative agent of Lyme disease, is transmitted to the mammalian host during the tick blood meal. To adapt to the different encountered environments, Borrelia has adjusted the expression pattern of various, mostly outer surface proteins. The function of most B. burgdorferi outer surface proteins remains unknown. We determined the crystal structure of a previously uncharacterized B. burgdorferi outer surface protein BBK01, known to belong to the paralogous gene family 12 (PFam12) as one of its five members. PFam12 members are shown to be upregulated as the tick starts its blood meal. Structural analysis of BBK01 revealed similarity to the coiled coil domain of structural maintenance of chromosomes (SMC) protein family members, while functional studies indicated that all PFam12 members are non-specific DNA-binding proteins. The residues involved in DNA binding were identified and probed by site-directed mutagenesis. The combination of SMC-like proteins being attached to the outer membrane and exposed to the environment or located in the periplasm, as observed in the case of PFam12 members, and displaying the ability to bind DNA, represents a unique feature previously not observed in bacteria.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Ticks , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lyme Disease/microbiology , Ticks/genetics , Membrane Proteins/metabolism , DNA/metabolism , Bacterial Outer Membrane Proteins/metabolism , Mammals/genetics
20.
Cell Biochem Funct ; 42(3): e4006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622913

ABSTRACT

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Animals , Humans , Cell Proliferation/genetics , Fibrosis , Liver Cirrhosis/genetics , Mammals/genetics , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...