Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.213
Filter
1.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843350

ABSTRACT

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Subject(s)
Adipose Tissue, Brown , Biological Evolution , Mammals , Thermogenesis , Animals , Mammals/genetics , Mammals/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiology , Humans , Genomics
2.
Ecol Lett ; 27(6): e14448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814285

ABSTRACT

Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high-resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator-prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long-term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium-sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long-term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.


Subject(s)
Extinction, Biological , Food Chain , Fossils , Predatory Behavior , Animals , Spain , Mammals/physiology , Carnivora/physiology , Biodiversity , Biological Evolution
3.
Glob Chang Biol ; 30(5): e17339, 2024 May.
Article in English | MEDLINE | ID: mdl-38804193

ABSTRACT

Climate plays a crucial role in shaping species distribution and evolution over time. Dr Vrba's Resource-Use hypothesis posited that zones at the extremes of temperature and precipitation conditions should host a greater number of climate specialist species than other zones because of higher historical fragmentation. Here, we tested this hypothesis by examining climate-induced fragmentation over the past 5 million years. Our findings revealed that, as stated by Vrba, the number of climate specialist species increases with historical regional climate fragmentation, whereas climate generalist species richness decreases. This relationship is approximately 40% stronger than the correlation between current climate and species richness for climate specialist species and 77% stronger for generalist species. These evidences suggest that the effect of climate historical fragmentation is more significant than that of current climate conditions in explaining mammal biogeography. These results provide empirical support for the role of historical climate fragmentation and physiography in shaping the distribution and evolution of life on Earth.


Subject(s)
Biodiversity , Climate Change , Mammals , Animals , Mammals/physiology , Climate , Animal Distribution , Phylogeography , Biological Evolution
4.
Hear Res ; 448: 109035, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763033

ABSTRACT

The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.


Subject(s)
Saccule and Utricle , Animals , Saccule and Utricle/physiology , Biological Evolution , Humans , Birds/physiology , Mammals/physiology , Hair Cells, Vestibular/physiology , Vestibule, Labyrinth/physiology , Hair Cells, Auditory/physiology , Species Specificity , Regeneration
5.
Sci Adv ; 10(20): eadj7132, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748803

ABSTRACT

Many large terrestrial mammalian predators use energy-intensive, high-risk, high-gain strategies to pursue large, high-quality prey. However, similar-sized marine mammal predators with even higher field metabolic rates (FMRs) consistently target prey three to six orders of magnitude smaller than themselves. Here, we address the question of how these active and expensive marine mammal predators can gain sufficient energy from consistently targeting small prey during breath-hold dives. Using harbor porpoises as model organisms, we show that hunting small aquatic prey is energetically cheap (<20% increase in FMR) for these marine predators, but it requires them to spend a large proportion (>60%) of time foraging. We conclude that this grazing foraging strategy on small prey is viable for marine mammal predators despite their high FMR because they can hunt near continuously at low marginal expense. Consequently, cessation of foraging due to human disturbance comes at a high cost, as porpoises must maintain their high thermoregulation costs with a reduced energy intake.


Subject(s)
Predatory Behavior , Animals , Predatory Behavior/physiology , Energy Metabolism , Hunting , Mammals/physiology , Aquatic Organisms/physiology , Phocoena/physiology
6.
PLoS One ; 19(5): e0294376, 2024.
Article in English | MEDLINE | ID: mdl-38739612

ABSTRACT

Understanding and mitigating the effects of anthropogenic climate change on species distributions requires the ability to track range shifts over time. This is particularly true for species occupying high-latitude regions, which are experiencing more extreme climate change than the rest of the world. In North America, the geographic ranges of many mammals reach their northernmost extent in Alaska, positioning this region at the leading edge of climate-induced distribution change. Over a decade has elapsed since the publication of the last spatial assessments of terrestrial mammals in the state. We compared public occurrence records against commonly referenced range maps to evaluate potential extralimital records and develop repeatable baseline range maps. We compared occurrence records from the Global Biodiversity Information Facility for 61 terrestrial mammal species native to mainland Alaska against a variety of range estimates (International Union for Conservation of Nature, Alaska Gap Analysis Project, and the published literature). We mapped extralimital records and calculated proportions of occurrences encompassed by range extents, measured mean direction and distance to prior range margins, evaluated predictive accuracy of published species models, and highlighted observations on federal lands in Alaska. Range comparisons identified 6,848 extralimital records for 39 of 61 (63.9%) terrestrial mainland Alaskan species. On average, 95.5% of Alaska Gap Analysis Project occurrence records and ranges were deemed accurate (i.e., > 90.0% correct) for 31 of 37 species, but overestimated extents for 13 species. The International Union for Conservation of Nature range maps encompassed 68.1% of occurrence records and were > 90% accurate for 17 of 39 species. Extralimital records represent either improved sampling and digitization or actual geographic range expansions. Here we provide new data-driven range maps, update standards for the archiving of museum-quality locational records and offer recommendations for mapping range changes for monitoring and conservation.


Subject(s)
Biodiversity , Climate Change , Mammals , Alaska , Animals , Mammals/physiology , Conservation of Natural Resources , Animal Distribution
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230184, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768199

ABSTRACT

To benefit from group living, individuals need to maintain cohesion and coordinate their activities. Effective communication thus becomes critical, facilitating rapid coordination of behaviours and reducing consensus costs when group members have differing needs and information. In many bird and mammal species, collective decisions rely on acoustic signals in some contexts but on movement cues in others. Yet, to date, there is no clear conceptual framework that predicts when decisions should evolve to be based on acoustic signals versus movement cues. Here, we first review how acoustic signals and movement cues are used for coordinating activities. We then outline how information masking, discrimination ability (Weber's Law) and encoding limitations, as well as trade-offs between these, can identify which types of collective behaviours likely rely on acoustic signals or movement cues. Specifically, our framework proposes that behaviours involving the timing of events or expression of specific actions should rely more on acoustic signals, whereas decisions involving complex choices with multiple options (e.g. direction and destination) should generally use movement cues because sounds are more vulnerable to information masking and Weber's Law effects. We then discuss potential future avenues of enquiry, including multimodal communication and collective decision-making by mixed-species animal groups. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamic'.


Subject(s)
Cues , Decision Making , Animals , Birds/physiology , Movement , Animal Communication , Social Behavior , Mammals/physiology , Vocalization, Animal/physiology
8.
Proc Biol Sci ; 291(2021): 20232868, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628132

ABSTRACT

Studies of vertebrate bone biomechanics often focus on skeletal adaptations at upper extremes of body mass, disregarding the importance of skeletal adaptations at lower extremes. Yet mammals are ancestrally small and most modern species have masses under 5 kg, so the evolution of morphology and function at small size should be prioritized for understanding how mammals subsist. We examined allometric scaling of lumbar vertebrae in the small-bodied Philippine endemic rodents known as cloud rats, which vary in mass across two orders of magnitude (15.5 g-2700 g). External vertebral dimensions scale with isometry or positive allometry, likely relating to body size and nuances in quadrupedal posture. In contrast to most mammalian trabecular bone studies, bone volume fraction and trabecular thickness scale with positive allometry and isometry, respectively. It is physiologically impossible for these trends to continue to the upper extremes of mammalian body size, and we demonstrate a fundamental difference in trabecular bone allometry between large- and small-bodied mammals. These findings have important implications for the biomechanical capabilities of mammalian bone at small body size; for the selective pressures that govern skeletal evolution in small mammals; and for the way we define 'small' and 'large' in the context of vertebrate skeletons.


Subject(s)
Lumbar Vertebrae , Mammals , Rats , Animals , Mammals/physiology , Bone and Bones , Body Size , Vertebrates
9.
Nature ; 628(8008): 569-575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570681

ABSTRACT

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Subject(s)
Biological Evolution , Fossils , Mammals , Tooth , Animals , Eutheria/anatomy & histology , Mammals/anatomy & histology , Mammals/classification , Mammals/physiology , Marsupialia/anatomy & histology , Molar/anatomy & histology , Molar/physiology , Phylogeny , Tooth/anatomy & histology , Tooth/physiology , Mastication
10.
Proc Biol Sci ; 291(2020): 20232874, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38565152

ABSTRACT

Protected area (PA) networks are a pivotal tool to fight biodiversity loss, yet they often need to balance the mission of nature conservation with the socio-economic need of giving opportunity for outdoor recreation. Recreation in natural areas is important for human health in an urbanized society, but can prompt behavioural modifications in wild animals. Rarely, however, have these responses being studied across multiple PAs and using standardized methods. We deployed a systematic camera trapping protocol at over 200 sites to sample medium and large mammals in four PAs within the European Natura 2000 network to assess their spatio-temporal responses to human frequentation, proximity to towns, amount of open habitat and topographical variables. By applying multi-species and single-species models for the number of diurnal, crepuscular and nocturnal detections and a multi-species model for nocturnality index, we estimated both species-specific- and meta-community-level effects, finding that increased nocturnality appeared the main strategy that the mammal meta-community used to cope with human disturbance. However, responses in the diurnal, crepuscular and nocturnal site use were mediated by species' body mass, with larger species exhibiting avoidance of humans and smaller species more opportunistic behaviours. Our results show the effectiveness of standardized sampling and provide insights for planning the expansion of PA networks as foreseen by the Kunming-Montreal biodiversity agreement.


Subject(s)
Conservation of Natural Resources , Mammals , Animals , Humans , Conservation of Natural Resources/methods , Mammals/physiology , Ecosystem , Animals, Wild , Biodiversity , Italy
11.
Glob Chang Biol ; 30(4): e17278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655695

ABSTRACT

The increasing frequency and severity of human-caused fires likely have deleterious effects on species distribution and persistence. In 2020, megafires in the Brazilian Pantanal burned 43% of the biome's unburned area and resulted in mass mortality of wildlife. We investigated changes in habitat use or occupancy for an assemblage of eight mammal species in Serra do Amolar, Brazil, following the 2020 fires using a pre- and post-fire camera trap dataset. Additionally, we estimated the density for two naturally marked species, jaguars Panthera onca and ocelots Leopardus pardalis. Of the eight species, six (ocelots, collared peccaries Dicotyles tajacu, giant armadillos Priodontes maximus, Azara's agouti Dasyprocta azarae, red brocket deer Mazama americana, and tapirs Tapirus terrestris) had declining occupancy following fires, and one had stable habitat use (pumas Puma concolor). Giant armadillo experienced the most precipitous decline in occupancy from 0.431 ± 0.171 to 0.077 ± 0.044 after the fires. Jaguars were the only species with increasing habitat use, from 0.393 ± 0.127 to 0.753 ± 0.085. Jaguar density remained stable across years (2.8 ± 1.3, 3.7 ± 1.3, 2.6 ± 0.85/100 km2), while ocelot density increased from 13.9 ± 3.2 to 16.1 ± 5.2/100 km2. However, the low number of both jaguars and ocelots recaptured after the fire period suggests that immigration may have sustained the population. Our results indicate that the megafires will have significant consequences for species occupancy and fitness in fire-affected areas. The scale of megafires may inhibit successful recolonization, thus wider studies are needed to investigate population trends.


A crescente frequência e gravidade dos incêndios causados pelo homem provavelmente terão efeitos deletérios na distribuição e persistência das espécies. Em 2020, mega incêndios no Pantanal brasileiro queimaram 43% do bioma e resultaram na mortalidade em massa da vida selvagem. Nós investigamos mudanças no uso ou ocupação do habitat para uma comunidade de oito espécies de mamíferos na Serra do Amolar, Brasil, após os incêndios de 2020, usando um conjunto de dados de armadilhas fotográficas instaladas no período pré e pós­fogo. Além disso, estimamos a densidade de duas espécies naturalmente marcadas, a onça­pintada Panthera onca e a jaguatirica Leopardus pardalis. Das oito espécies, seis (a jaguatirica, o cateto Dicotyles tajacu, o tatu­canastra Priodontes maximus, a cutia Dasyprocta azarae, o veado mateiro Mazama americana e a anta Tapirus terrestris) tiveram ocupação reduzida após os incêndios, e uma teve uso de habitat estável (a onça­parda, Puma concolor). O tatu­canastra apresentou o declínio mais acentuado na ocupação após os incêndios de 0,431 ± 0,171 para 0,077 ± 0,044. A onça­pintada foi a única espécie com uso crescente de habitat, de 0,393 ± 0,127 para 0,753 ± 0,085. A densidade da onça­pintada permaneceu estável ao longo dos anos (2,8 ± 1,3, 3,7 ± 1,3, 2,6 ± 0,85/100 km2), enquanto a densidade da jaguatirica aumentou de 13,9 ± 3,2 para 16,1 ± 5,2/100 km2. No entanto, o baixo número de onças­pintadas e jaguatiricas recapturadas após o período do fogo sugere que a imigração pode ter sustentado as populações. Nossos resultados indicam que os mega incêndios terão consequências significativas para a ocupação e resiliência das espécies nas áreas afetadas pelo fogo. A escala dos mega incêndios pode inibir uma recolonização bem­sucedida, pelo que são necessários estudos mais amplos para investigar as tendências populacionais.


Subject(s)
Ecosystem , Animals , Brazil , Mammals/physiology , Population Dynamics , Fires , Population Density , Wildfires
12.
Sheng Li Xue Bao ; 76(2): 175-214, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658370

ABSTRACT

Myocardial infarction (MI) leads to a massive loss of cardiomyocytes, resulting in pathological cardiac remodeling and heart failure. Promoting cardiomyocyte regeneration is crucial for repairing the damaged heart. It is acknowledged that regenerative cardiomyocyte derives from the existing cardiomyocytes. In recent years, advancements in this field have updated our understanding of cardiomyocyte regeneration in many aspects, including intrinsic cell source and microenvironmental characteristics, extrinsic factors, molecular biology mechanisms, and intervention strategies. Here, we report a consensus by an expert committee on the definition, characteristics, evaluation, research methods, regulatory mechanisms, and intervention measures related to mammalian cardiomyocyte regeneration. The aim is to clarify important unresolved issues in this field and to promote myocardial regeneration research and its clinical translation.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Humans , Cell Differentiation , Consensus , Mammals/physiology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/physiology , Myocytes, Cardiac/cytology , Regeneration/physiology
13.
Ecology ; 105(5): e4298, 2024 May.
Article in English | MEDLINE | ID: mdl-38610092

ABSTRACT

Camera traps became the main observational method of a myriad of species over large areas. Data sets from camera traps can be used to describe the patterns and monitor the occupancy, abundance, and richness of wildlife, essential information for conservation in times of rapid climate and land-cover changes. Habitat loss and poaching are responsible for historical population losses of mammals in the Atlantic Forest biodiversity hotspot, especially for medium to large-sized species. Here we present a data set from camera trap surveys of medium to large-sized native mammals (>1 kg) across the Atlantic Forest. We compiled data from 5380 ground-level camera trap deployments in 3046 locations, from 2004 to 2020, resulting in 43,068 records of 58 species. These data add to existing data sets of mammals in the Atlantic Forest by including dates of camera operation needed for analyses dealing with imperfect detection. We also included, when available, information on important predictors of detection, namely the camera brand and model, use of bait, and obstruction of camera viewshed that can be measured from example pictures at each camera location. Besides its application in studies on the patterns and mechanisms behind occupancy, relative abundance, richness, and detection, the data set presented here can be used to study species' daily activity patterns, activity levels, and spatiotemporal interactions between species. Moreover, data can be used combined with other data sources in the multiple and expanding uses of integrated population modeling. An R script is available to view summaries of the data set. We expect that this data set will be used to advance the knowledge of mammal assemblages and to inform evidence-based solutions for the conservation of the Atlantic Forest. The data are not copyright restricted; please cite this paper when using the data.


As armadilhas fotográficas tornaram­se o principal método de observação de muitas espécies em grandes áreas. Os dados obtidos com armadilhas fotográficas podem ser usados para descrever os padrões e monitorar a ocupação, abundância e riqueza da vida selvagem, informação essencial para a conservação em tempos de rápidas mudanças climáticas e de cobertura do solo. A perda de habitat e a caça furtiva são responsáveis pelas perdas populacionais históricas de mamíferos no hotspot de biodiversidade da Mata Atlântica, especialmente para espécies de médio e grande porte. Aqui apresentamos um conjunto de dados de levantamentos com armadilhas fotográficas de mamíferos de médio e grande porte (>1 kg) em toda a Mata Atlântica. Compilamos dados de 5.380 armadilhas fotográficas instaladas no nível do chão em 3.046 locais, de 2004 a 2020, resultando em 43.068 registros de 58 espécies. Esses dados acrescentam aos conjuntos de dados existentes de mamíferos na Mata Atlântica por incluir as datas de operação das câmeras, que são necessárias para análises que lidam com detecção imperfeita. Também incluímos, quando disponíveis, informações sobre importantes preditores de detecção, como marca e modelo da câmera, uso de isca e obstrução do visor da câmera que pode ser medido a partir de imagens de exemplo em cada local da câmera. Além de estudos sobre os padrões e mecanismos por trás da ocupação, abundância relativa, riqueza e detecção, o conjunto de dados aqui apresentado pode ser usado para estudar os padrões de atividade diária das espécies, nível de atividade e interações espaço­temporais entre as espécies. Além disso, os dados podem ser usados em combinação com outras fontes de dados em diversas análises com modelagem populacional integrada. Um script R está disponível para visualizar um resumo do conjunto de dados. Esperamos que este conjunto de dados seja usado para aumentar o conhecimento sobre as assembleias de mamíferos e usado para informar soluções baseadas em evidências para a conservação da Mata Atlântica. Os dados não são restritos por direitos autorais e, por favor, cite este documento ao usar os dados.


Subject(s)
Forests , Mammals , Mammals/physiology , Animals , Photography , Biodiversity , Conservation of Natural Resources/methods
14.
J Anim Ecol ; 93(5): 583-598, 2024 May.
Article in English | MEDLINE | ID: mdl-38566364

ABSTRACT

Large mammalian herbivores substantially impact ecosystem functioning. As their populations are dramatically altered globally, disentangling their consumptive and non-consumptive effects is critical to advance mechanistic understanding and improve prediction of effects over ecosystem and Earth-system spatial extents. Mathematical models have played an important role in clarifying potential mechanisms of herbivore zoogeochemistry, based mostly on their consumptive effects as primary consumers and recyclers of organic and inorganic matter via defecation and urination. Trampling is a ubiquitous effect among walking vertebrates, but the consequences and potential mechanisms of trampling in diverse environments remain poorly understood. We derive a novel mathematical model of large mammalian herbivore effects on ecosystem nitrogen cycling, focusing on how trampling and environmental context impact soil processes. We model herbivore trampling with a linear positive or negative additive effect on soil-mediated nitrogen cycling processes. Combining analytical and numerical analyses, we find trampling by large mammalian herbivores is likely to decrease nitrogen mineralisation rate across diverse environments, such as temperate grassland and boreal forest. These effects are mediated by multiple potential mechanisms, including trampling-induced changes to detritivore biomass and functioning (e.g. rate of organic matter consumption). We also uncover scenarios where trampling can increase nitrogen mineralisation rate, contingent on the environment-specific relative sensitivity of detritivore mineral-nitrogen release and detritivore mortality, to trampling. In contrast to some consumptive mechanisms, our results suggest the pace of soil nitrogen cycling prior to trampling has little influence over the direction of the trampling net effect on nitrogen mineralisation, but that net effects may be greater in slow-cycling systems (e.g. boreal forests) than in fast-cycling systems (e.g. grasslands). Our model clarifies the potential consequences of previously overlooked mechanisms of zoogeochemistry that are common to all terrestrial biomes. Our results provide empirically testable predictions to guide future progress in empirical and theoretical studies of herbivore effects in diverse environmental contexts. Resolving ecological contingencies around animal consumptive and non-consumptive effects will improve whole-ecosystem management efforts such as restoration and rewilding.


Subject(s)
Herbivory , Mammals , Nitrogen Cycle , Soil , Animals , Mammals/physiology , Soil/chemistry , Models, Biological , Ecosystem , Nitrogen/metabolism
15.
Nature ; 628(8008): 563-568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600379

ABSTRACT

More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.


Subject(s)
Certification , Forestry , Forests , Mammals , Animals , Africa, Western , Biodiversity , Body Weight , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Elephants , Forestry/legislation & jurisprudence , Forestry/methods , Forestry/standards , Gorilla gorilla , Mammals/anatomy & histology , Mammals/classification , Mammals/physiology , Photography , Rodentia , Male , Female
16.
Elife ; 122024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669069

ABSTRACT

Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the 'life-history' hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.


Subject(s)
Biological Evolution , Hibernation , Animals , Hibernation/physiology , Male , Female , Seasons , Reproduction/physiology , Phylogeny , Mammals/physiology
17.
Ann N Y Acad Sci ; 1534(1): 24-44, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426943

ABSTRACT

This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.


Subject(s)
Brain , Parenting , Humans , Animals , Female , Male , Brain/physiology , Mammals/physiology , Social Behavior , Neurons/physiology , Maternal Behavior/physiology
19.
PLoS One ; 19(2): e0297993, 2024.
Article in English | MEDLINE | ID: mdl-38346052

ABSTRACT

Habitat loss and degradation are leading drivers of the widespread decline in wildlife populations, and understanding how wildlife perceive and navigate their environment is useful for predicting responses to future landscape changes. Small mammals play an important role in their environments, however, many species are threatened by rapid environmental change. The Harris' antelope squirrel (Ammospermophilus harrisii) is endemic to the Sonoran Desert but faces multiple landscape changes due to anthropogenic activity. We fitted A. harrisii with radio collars to quantify resource selection and better understand how further environmental change may affect squirrels. Squirrels exhibited differential selection depending on behavior and scale. When selecting for microsites suitable for burrows and alarm calling (i.e., fourth-order selection), squirrels selected for both cacti and shrub portions of the habitat. Overall habitat selection within home ranges (i.e., third-order selection) showed selection against shrub patches, however, suggesting that further shrub encroachment may have consequences for A. harrisii behavior and distribution.


Subject(s)
Animals, Wild , Ecosystem , Animals , Mammals/physiology , Sciuridae
20.
Proc Biol Sci ; 291(2015): 20231587, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38228177

ABSTRACT

Flexibility in activity timing may enable organisms to quickly adapt to environmental changes. Under global warming, diurnally adapted endotherms may achieve a better energy balance by shifting their activity towards cooler nocturnal hours. However, this shift may expose animals to new or increased environmental challenges (e.g. increased predation risk, reduced foraging efficiency). We analysed a large dataset of activity data from 47 ibex (Capra ibex) in two protected areas, characterized by varying levels of predation risk (presence versus absence of the wolf-Canis lupus). We found that ibex increased nocturnal activity following warmer days and during brighter nights. Despite the considerable sexual dimorphism typical of this species and the consequent different predation-risk perception, males and females demonstrated consistent responses to heat in both predator-present and predator-absent areas. This supports the hypothesis that shifting activity towards nighttime may be a common strategy adopted by diurnal endotherms in response to global warming. As nowadays different pressures are pushing mammals towards nocturnality, our findings emphasize the urgent need to integrate knowledge of temporal behavioural modifications into management and conservation planning.


Subject(s)
Predatory Behavior , Refugium , Animals , Male , Female , Mammals/physiology , Goats/physiology , Heat-Shock Response
SELECTION OF CITATIONS
SEARCH DETAIL
...