Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.717
Filter
1.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822246

ABSTRACT

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Subject(s)
14-3-3 Proteins , Actinin , Autophagy , Chemotaxis , Endoplasmic Reticulum Stress , Mammary Neoplasms, Animal , Mucoproteins , Animals , Dogs , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Female , Actinin/metabolism , Actinin/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Cell Line, Tumor , Chemotaxis/genetics , Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Mucoproteins/genetics , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Oncogene Proteins/genetics
2.
BMC Vet Res ; 20(1): 233, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807154

ABSTRACT

Canine mammary gland tumors (MGT) have a poor prognosis in intact female canines, posing a clinical challenge. This study aimed to establish novel canine mammary cancer cell lines from primary tumors and characterize their cellular and molecular features to find potential therapeutic drugs. The MGT cell lines demonstrated rapid cell proliferation and colony formation in an anchorage-independent manner. Vimentin and α-SMA levels were significantly elevated in MGT cell lines compared to normal canine kidney (MDCK) cells, while CDH1 expression was either significantly lower or not detected at all, based on quantitative real-time PCR (qRT-PCR) analysis. Functional annotation and enrichment analysis revealed that epithelial-mesenchymal transition (EMT) phenotypes and tumor-associated pathways, particularly the PI3K/Akt signaling pathway, were upregulated in MGT cells. BYL719 (Alpelisib), a PI3K inhibitor, was also examined for cytotoxicity on the MGT cell lines. The results show that BYL719 can significantly inhibit the proliferation of MGT cell lines in vitro. Overall, our findings suggest that the MGT cell lines may be valuable for future studies on the development, progression, metastasis, and management of tumors.


Subject(s)
Dog Diseases , Mammary Neoplasms, Animal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Dogs , Female , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Dog Diseases/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction , Phosphoinositide-3 Kinase Inhibitors/pharmacology
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732133

ABSTRACT

Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Mammary Neoplasms, Animal , Organophosphorus Compounds , Ubiquinone , Animals , Dogs , Apoptosis/drug effects , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Female , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Antineoplastic Agents/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Organophosphorus Compounds/pharmacology , Cell Proliferation/drug effects , Cell Movement/drug effects
4.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627785

ABSTRACT

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Subject(s)
Mammary Neoplasms, Animal , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
5.
Vet Comp Oncol ; 22(2): 284-294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600051

ABSTRACT

The first aim of this study is to demonstrate the clinical efficacy and reliability of two different neoadjuvant chemotherapy (NAC) protocols consisting of doxorubicin/cyclophosphamide (AC) and paclitaxel in dogs with clinical stages II-IV canine malignant mammary tumours (CMTs). Secondly, to determine the Luminal A, Luminal B, HER2-positive and triple-negative molecular subtypes and their value in predicting clinical response to NAC in biopsy samples, and thirdly, to reveal the changes in Ki-67, human epidermal growth factor receptor type 2 (HER2), oestrogen receptor (ER), and progesterone receptor (PgR) expression levels induced by NAC. Thirty dogs with clinical stages II-IV CMTs (T1-3N0-1M0) according to the modified TNM system were included in the study. Dogs in group-1 (n = 15) AC combination and dogs in group-2 (n = 15) were administered paclitaxel. Partial response (PR) was the most common clinical response in both treatment groups (66.66% and 86.66%, respectively). There was no difference between the groups regarding clinical response parameters (p = .001). The rate of treatment responders was higher than the rate of non-responders in both groups (p < .001). The adverse effects observed in both groups were mostly limited to grades 1 and 2 and all were easy to manage. The most frequently detected molecular subtype was Luminal A (59.25%). Complete response (CR) was achieved in 33.33% of dogs with triple-negative CMT in the AC group and 14.29% of the Luminal A subtype in the paclitaxel group. Alterations in Ki-67, HER2, ER, and PgR expressions after chemotherapy were not statistically significant (p > .05). As a result, we have shown that these neoadjuvant chemotherapy protocols are effective and safe alternative treatment options for CMTs.


Subject(s)
Dog Diseases , Doxorubicin , Mammary Neoplasms, Animal , Neoadjuvant Therapy , Paclitaxel , Animals , Dogs , Dog Diseases/drug therapy , Female , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Neoadjuvant Therapy/veterinary , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Staging/veterinary , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Receptor, ErbB-2/metabolism
6.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667310

ABSTRACT

Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.


Subject(s)
Mammary Neoplasms, Animal , Animals , Dogs , Mammary Neoplasms, Animal/pathology , Female , Cell Culture Techniques, Three Dimensional/methods , Cell Line, Tumor , Cell Culture Techniques/methods , Humans , Models, Biological , Tumor Microenvironment
7.
J Vet Med Sci ; 86(5): 596-599, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38583979

ABSTRACT

There are few studies on diseases affecting endangered African wild dogs. We report our findings on malignant tumors in two African wild dogs. Case 1 was a 6-year-old intact female diagnosed with inflammatory mammary carcinoma with pulmonary metastasis. Case 2 was an 11-year-old male diagnosed with primary hemangiosarcoma of the left atrial coronary sulcus with metastasis to multiple organs. Additionally, the tumor had grown through the cardiac wall, causing cardiac tamponade. The identification of disease incidence trends provides important information which will allow for the early detection and treatment of malignant tumors, and aid in the conservation of this species.


Subject(s)
Canidae , Hemangiosarcoma , Mammary Neoplasms, Animal , Animals , Hemangiosarcoma/veterinary , Hemangiosarcoma/pathology , Female , Mammary Neoplasms, Animal/pathology , Male , Carcinoma/veterinary , Carcinoma/pathology , Heart Neoplasms/veterinary , Heart Neoplasms/pathology , Heart Neoplasms/secondary , Lung Neoplasms/veterinary , Lung Neoplasms/pathology , Lung Neoplasms/secondary
8.
Cell Death Dis ; 15(4): 259, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609375

ABSTRACT

Radiotherapy effectiveness in breast cancer is limited by radioresistance. Nevertheless, the mechanisms behind radioresistance are not yet fully understood. RUVBL1 and RUVBL2, referred to as RUVBL1/2, are crucial AAA+ ATPases that act as co-chaperones and are connected to cancer. Our research revealed that RUVBL1, also known as pontin/TIP49, is excessively expressed in MMTV-PyMT mouse models undergoing radiotherapy, which is considered a murine spontaneous breast-tumor model. Our findings suggest that RUVBL1 enhances DNA damage repair and radioresistance in breast cancer cells both in vitro and in vivo. Mechanistically, we discovered that DTL, also known as CDT2 or DCAF2, which is a substrate adapter protein of CRL4, promotes the ubiquitination of RUVBL1 and facilitates its binding to RUVBL2 and transcription cofactor ß-catenin. This interaction, in turn, attenuates its binding to acetyltransferase Tat-interacting protein 60 (TIP60), a comodulator of nuclear receptors. Subsequently, ubiquitinated RUVBL1 promotes the transcriptional regulation of RUVBL1/2-ß-catenin on genes associated with the non-homologous end-joining (NHEJ) repair pathway. This process also attenuates TIP60-mediated H4K16 acetylation and the homologous recombination (HR) repair process. Expanding upon the prior study's discoveries, we exhibited that the ubiquitination of RUVBL1 by DTL advances the interosculation of RUVBL1/2-ß-catenin. And, it then regulates the transcription of NHEJ repair pathway protein. Resulting in an elevated resistance of breast cancer cells to radiation therapy. From the aforementioned, it is evident that targeting DTL-RUVBL1/2-ß-catenin provides a potential radiosensitization approach when treating breast cancer.


Subject(s)
Mammary Neoplasms, Animal , beta Catenin , Animals , Mice , ATPases Associated with Diverse Cellular Activities/genetics , beta Catenin/genetics , DNA Helicases/genetics , Gene Expression Regulation , Ubiquitin , Ubiquitination , Nuclear Proteins
9.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612922

ABSTRACT

Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Precision Medicine , Breast , Medical Oncology
10.
Discov Med ; 36(182): 613-620, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531802

ABSTRACT

BACKGROUND: Breast cancer (BC), a common tumor in women, has high morbidity and mortality. Formononetin, an active ingredient in red clover and Astragalus membranaceus, has a wide range of pharmacological applications, including as an anticancer agent. Since immunotherapy is a hot topic in the treatment strategy of BC, it was dedicated to appraising the specific mechanism of formononetin in BC immunotherapy in this research. METHODS: Different formononetin concentrations (0, 20, 40, 60, 80, 100 µM) were used to treat BC cells transfected with pcDNA3.1-Programmed death ligand 1 (PD-L1) or Short-hairpin RNA (sh)-PD-L1. Cells were separated into four subgroups: CTRL, pcDNA3.1-PD-L1, sh-CTRL, and sh-PD-L1. Cell viability and cell cycle were assessed through Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and flow cytometry. Programmed death ligand 1 (PD-L1) mRNA concentration was validated via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Cell metastasis was evaluated via cloning assay and transwell assay. The p-STING/stimulator of interferon genes (STING), p-p65/p65, and PD-L1 concentrations were determined by western blot. RESULTS: Formononetin restrained the proliferation of MCF-7 and MDA-MB-468 cells, and reduced PD-L1 mRNA, p-STING/STING, and p-p65/p65 protein concentrations. Whereas PD-L1 inhibition restrained the viability of BC cells, pcDNA3.1-PD-L1 intervention had the opposite result. STING pathway inhibitor C-176 combined with formononetin treatment further restrained cell proliferation, colony formation, and cell invasion, in contrast to cells treated with formononetin alone. CONCLUSION: Formononetin can restrain the proliferation of BC cells, which may be mediated through the interference of PD-L1 and suppression of the activation of the STING-NF-κB pathway.


Subject(s)
Breast Neoplasms , Isoflavones , Mammary Neoplasms, Animal , Animals , Humans , Female , NF-kappa B/metabolism , B7-H1 Antigen , Breast Neoplasms/pathology , Carcinogenesis , Cell Transformation, Neoplastic , RNA, Messenger , Cell Line, Tumor
11.
Aging (Albany NY) ; 16(6): 5581-5600, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499391

ABSTRACT

OBJECTIVE: To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity, and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer. METHODS: TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected from the University of California Santa Cruz database. Survival analyses were performed to explore the relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman's and Wilcoxon's tests were used to investigate the relationships between S100A7 expression and immune characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-quantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay. RESULTS: S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7 was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further, S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and chemotherapy resistance of breast cancer cells in vitro experiments. CONCLUSION: High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast cancer, making it a potential immune and chemotherapy resistance biomarker.


Subject(s)
Mammary Neoplasms, Animal , Animals , Adjuvants, Immunologic , Biological Assay , Methylation , Protein Processing, Post-Translational , Humans
12.
Comput Biol Med ; 173: 108319, 2024 May.
Article in English | MEDLINE | ID: mdl-38513394

ABSTRACT

Segmentation and classification of breast tumors are critical components of breast ultrasound (BUS) computer-aided diagnosis (CAD), which significantly improves the diagnostic accuracy of breast cancer. However, the characteristics of tumor regions in BUS images, such as non-uniform intensity distributions, ambiguous or missing boundaries, and varying tumor shapes and sizes, pose significant challenges to automated segmentation and classification solutions. Many previous studies have proposed multi-task learning methods to jointly tackle tumor segmentation and classification by sharing the features extracted by the encoder. Unfortunately, this often introduces redundant or misleading information, which hinders effective feature exploitation and adversely affects performance. To address this issue, we present ACSNet, a novel multi-task learning network designed to optimize tumor segmentation and classification in BUS images. The segmentation network incorporates a novel gate unit to allow optimal transfer of valuable contextual information from the encoder to the decoder. In addition, we develop the Deformable Spatial Attention Module (DSAModule) to improve segmentation accuracy by overcoming the limitations of conventional convolution in dealing with morphological variations of tumors. In the classification branch, multi-scale feature extraction and channel attention mechanisms are integrated to discriminate between benign and malignant breast tumors. Experiments on two publicly available BUS datasets demonstrate that ACSNet not only outperforms mainstream multi-task learning methods for both breast tumor segmentation and classification tasks, but also achieves state-of-the-art results for BUS tumor segmentation. Code and models are available at https://github.com/qqhe-frank/BUS-segmentation-and-classification.git.


Subject(s)
Learning , Mammary Neoplasms, Animal , Animals , Ultrasonography , Diagnosis, Computer-Assisted , Image Processing, Computer-Assisted
13.
J Exp Clin Cancer Res ; 43(1): 84, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493157

ABSTRACT

BACKGROUND: How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS: We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS: We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS: These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.


Subject(s)
Mammary Neoplasms, Animal , Tumor Microenvironment , Animals , Humans
14.
PeerJ ; 12: e17077, 2024.
Article in English | MEDLINE | ID: mdl-38500523

ABSTRACT

Background: Metastatic disease resulting from mammary gland tumors (MGTs) is a known cause of death among dogs and cats. Keys to successful prevention and management strategies involve the accurate recording of diagnostic data. Methods: This retrospective study reviewed the epidemiology and classification of canine mammary gland tumors (CMTs) and feline mammary gland tumors (FMTs), as well as the factors including sex, age, and breed related to the occurrence of these tumors. Accordingly, 1,736 tumor biopsy cases were reported from 2012 to 2019 at Chiang Mai University Small Animal Hospital, Thailand, with 1,639 canine tumor biopsy cases and 97 feline tumor biopsy cases. Results: The proportion of CMTs was reported at 24.5% (401/1,639) for all canine tumor biopsy cases. Benign and malignant tumors were reported at 14.5% (58/401) and 85.5% (343/401) for all CMT cases, respectively. The mean age of dogs affected by benign CMTs was 9.0 ± 3.0 years, which was significantly lower than for malignant CMTs at 9.9 ± 2.8 years (P = 0.0239). According to histopathological classification, benign mixed tumors and simple carcinoma types were highest among benign and malignant CMT cases, respectively. Moreover, female dogs were at significantly higher risk of developing mammary gland tumors (OR = 45.8, 95% CI [3.9-86.0], P < 0.0001) than male dogs, as well as older dogs (>8 years) (OR = 1.7, 95% CI [1.2-2.2], P = 0.0001) compared to young ones (≤8 years). The proportion of FMTs was 37.1% (36/97) for all feline tumor biopsy cases. Benign and malignant tumors for all FMTs were reported at 16.7% (6/36) and 83.3% (30/36), respectively. According to histopathological classifications, adenoma and simple carcinoma were present in the highest proportion among benign and malignant FMTs, respectively. Female cats were at a significantly higher risk of developing mammary gland tumors than male cats (OR = 25.7, 95% CI [3.9-272.8], P < 0.0001). Conclusions and clinical importance: There was a high proportion of MGT cases compared with other tumor cases reported in a secondary care hospital in Chiang Mai, Thailand from 2012 to 2019, and malignant tumor biopsies have been more frequently observed than benign tumor biopsies in both CMT and FMT cases. The resulting data originating from this study can be an aid for veterinary oncologists in better educating clients and planning treatment and prevention strategies and it can be used as a basis for further experimental studies in the oncology section.


Subject(s)
Carcinoma , Cat Diseases , Dog Diseases , Mammary Glands, Human , Mammary Neoplasms, Animal , Sweat Gland Neoplasms , Humans , Cats , Dogs , Animals , Male , Female , Child , Cat Diseases/epidemiology , Thailand/epidemiology , Retrospective Studies , Mammary Glands, Human/pathology , Secondary Care , Dog Diseases/diagnosis , Carcinoma/pathology , Biopsy/veterinary , Mammary Neoplasms, Animal/epidemiology , Hospitals
15.
PLoS One ; 19(3): e0298437, 2024.
Article in English | MEDLINE | ID: mdl-38498459

ABSTRACT

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Subject(s)
Mammary Neoplasms, Animal , Oncolytic Virotherapy , Oncolytic Viruses , Radiotherapy, Image-Guided , Vaccinia , Humans , Animals , Mice , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Mammary Neoplasms, Animal/radiotherapy , Immunotherapy , Oncolytic Virotherapy/methods , Tumor Microenvironment
16.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38442201

ABSTRACT

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Subject(s)
Aurora Kinase A , Breast Neoplasms , Mammary Neoplasms, Animal , PTEN Phosphohydrolase , Peptide Elongation Factor 1 , Animals , Female , Humans , Mice , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , F-Box-WD Repeat-Containing Protein 7/genetics , Glycogen Synthase Kinase 3 beta , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism
17.
Sci Rep ; 14(1): 7180, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531932

ABSTRACT

We aimed to investigate the correlation between shear-wave elastography (SWE) and apparent diffusion coefficient (ADC) values in breast cancer and to identify the associated characteristics. We included 91 breast cancer patients who underwent SWE and breast MRI prior to surgery between January 2016 and November 2017. We measured the lesion's mean (Emean) and maximum (Emax) elasticities of SWE and ADC values. We evaluated the correlation between SWE, ADC values and tumor size. The mean SWE and ADC values were compared for categorical variable of the pathological/imaging characteristics. ADC values showed negative correlation with Emean (r = - 0.315, p = 0.002) and Emax (r = - 0.326, p = 0.002). SWE was positively correlated with tumor size (r = 0.343-0.366, p < 0.001). A higher SWE value indicated a tendency towards a higher T stage (p < 0.001). Triple-negative breast cancer showed the highest SWE values (p = 0.02). SWE were significantly higher in breast cancers with posterior enhancement, vascularity, and washout kinetics (p < 0.02). SWE stiffness and ADC values were negatively correlated in breast cancer. SWE values correlated significantly with tumor size, and were higher in triple-negative subtype and aggressive imaging characteristics.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Humans , Animals , Female , Breast Neoplasms/pathology , Elasticity Imaging Techniques/methods , Breast/pathology , Ultrasonography, Mammary/methods
18.
Vet Med Sci ; 10(3): e1366, 2024 05.
Article in English | MEDLINE | ID: mdl-38527110

ABSTRACT

BACKGROUND: DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES: In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS: We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS: We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS: The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.


Subject(s)
Dog Diseases , Fanconi Anemia Complementation Group N Protein , Mammary Neoplasms, Animal , Animals , Dogs , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/veterinary , Breast Neoplasms/pathology , Carcinogenesis , Dog Diseases/genetics , Dog Diseases/pathology , Fanconi Anemia Complementation Group N Protein/chemistry , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Predisposition to Disease , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mutation , Tumor Suppressor Proteins/genetics
19.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474142

ABSTRACT

In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.


Subject(s)
Breast Neoplasms , Dog Diseases , Mammary Neoplasms, Animal , Dogs , Humans , Animals , Female , Mammary Neoplasms, Animal/pathology , Breast Neoplasms/pathology , Biomarkers , Immunotherapy , Dog Diseases/pathology
20.
Sci Rep ; 14(1): 5569, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448646

ABSTRACT

This is a comprehensive retrospective study to characterize female dogs with canine mammary tumors (CMTs) using a dataset retrieved from the archives of the Division of Animal Pathology, Institute of Veterinary Medicine in Warsaw, and to identify prognostic factors. Clinical and histopathological data of 1447 dogs with CMTs were included. Malignant tumours were found in 83.3% (n = 1206), benign tumours in 11.7% (n = 169), and non-neoplastic lesions in 5.0% (n = 72) of dogs. Dogs most often had grade II carcinomas (38.2%, 215/562) of a single histological subtype (88.5%, 1281/1447), mostly simple carcinoma (35.3%, 510/1447). Dogs with a median age of 10 years significantly often had larger (≥ 3 cm) and malignant CMTs, whereas intact females had smaller tumours (median size 2.0 cm). However, the threshold value for the age of the dog in the differentiation of malignant and non-neoplastic/benign masses could not be determined. Most females were hormonally active (76.4%, 372/487). Hormonally active dogs significantly more often had multiple tumours. Multiple tumours were significantly smaller (median 2.5 cm) than single ones. Among pedigree dogs, small-breed dogs were mostly recorded (43%, 428/1006). Twelve breeds had an increased risk of CMTs, regardless of tumour behaviour, compared with the theoretical distribution of pedigree dogs in Poland. Four breeds were often affected only by malignant and other four breeds only by non-neoplastic/benign CMT. Large-breed dogs were significantly younger and affected by larger CMT (median 4 cm) compared with small- and medium-breed dogs. Ninety dogs with a malignant CMT and complete records were included in the full analysis of CMT-specific survival (CMT-SS) with a median follow-up time of 20.0 months. We showed that the timing of ovariohysterectomy in relation to mastectomy was significantly associated with grade, CMT-SS, and CMT-related death. We indicated the low diagnostic accuracy of palpation of regional lymph nodes (RLN) in the prediction of their metastatic involvement. By multivariable analysis, dogs with neoplastic emboli, tumour ulceration, and simple or complex carcinoma had a significantly higher risk of local recurrence. Tumour size > 3 cm was as a strong independent predictor of lung metastases. Compared with dogs with an easily separated localized tumour, dogs with a multiple/diffuse malignant CMT pattern had a fivefold higher risk of death. The risk of death was significantly higher in the presence of neoplastic emboli (~ fivefold) and tumour ulceration (~ fourfold). Furthermore, the presence of neoplastic emboli and large tumour size were independent predictors of CMT-related death.


Subject(s)
Carcinoma , Mammary Neoplasms, Animal , Female , Dogs , Animals , Retrospective Studies , Poland/epidemiology , Mastectomy , Factor Analysis, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...