Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.125
Filter
1.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709246

ABSTRACT

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Subject(s)
Immunotherapy , Membrane Proteins , Pyroptosis , Tumor Microenvironment , Uterine Cervical Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/therapy , Female , Humans , Mice , Animals , Pyroptosis/drug effects , Membrane Proteins/metabolism , Manganese/chemistry , Manganese/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Signal Transduction/drug effects , Cell Proliferation/drug effects , Calcium/metabolism , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
2.
Bioconjug Chem ; 35(5): 703-714, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708860

ABSTRACT

Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.


Subject(s)
Contrast Media , Liver , Magnetic Resonance Imaging , Manganese , Manganese/chemistry , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Animals , Contrast Media/chemistry , Contrast Media/chemical synthesis , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Mice , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
3.
Bioresour Technol ; 402: 130841, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750830

ABSTRACT

Activation of peroxymonosulfate (PMS) with solid catalysts for organic pharmaceutical degradation still faces challenge due to the demand of inexpensive catalysts. In this study, manganese-oxidizing microalgae (MOM) and its associated biogenic manganese oxides (BMO) were employed to prepare biomass-transformed porous-carbon/manganese (B-PC/Mn) catalyst through high-temperature calcination (850 °C). Remarkably, 100 % of carbamazepine (CBZ) was degraded within 30 min in the B-PC/Mn/PMS system. The degradation kinetic constant was 0.1718 min-1, which was 44.0 times higher than that of the biomass-transformed porous carbon mixed with MnOx activated PMS system. 1O2 was generated in the B-PC/Mn/PMS system, which is responsible for CBZ degradation. The MOM-BMO-associated structure greatly increased the specific surface areas and the contents of the C = O and pyrrolic-N groups, which facilitated PMS activation. The structure also induced the generation of Mn5C2, which exhibited a strong adsorption towards PMS. This study provides a novel strategy for preparing catalysts by using waste biomass.


Subject(s)
Biomass , Carbamazepine , Carbon , Manganese , Peroxides , Carbamazepine/chemistry , Catalysis , Porosity , Peroxides/chemistry , Carbon/chemistry , Manganese/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Microalgae/metabolism , Oxides/chemistry , Manganese Compounds/chemistry , Adsorption
4.
Artif Cells Nanomed Biotechnol ; 52(1): 321-333, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38795050

ABSTRACT

Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.


Subject(s)
Indoles , Magnetic Resonance Imaging , Polymers , Indoles/chemistry , Humans , Polymers/chemistry , Contrast Media/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Manganese/chemistry , Theranostic Nanomedicine/methods
5.
J Med Chem ; 67(10): 8261-8270, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38690886

ABSTRACT

This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.


Subject(s)
Manganese , Mice, SCID , Positron-Emission Tomography , Receptor, ErbB-2 , Trastuzumab , Animals , Female , Mice , Cell Line, Tumor , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Manganese/chemistry , Manganese/metabolism , Mice, Inbred BALB C , Picolinic Acids/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Receptor, ErbB-2/metabolism , Tissue Distribution , Trastuzumab/chemistry
6.
Acta Biomater ; 181: 402-414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734282

ABSTRACT

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Subject(s)
Immunotherapy , Tumor Microenvironment , Animals , Immunotherapy/methods , Mice , Tumor Microenvironment/drug effects , Cell Line, Tumor , Tumor Hypoxia/drug effects , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Oxides/chemistry , Oxides/pharmacology , Manganese/chemistry , Manganese/pharmacology , Humans , Female , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/immunology , Neoplasms/drug therapy , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Mice, Inbred C57BL
7.
Sci Rep ; 14(1): 10066, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698009

ABSTRACT

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Subject(s)
Ampicillin , Biosensing Techniques , Chitosan , Manganese , Sulfides , Zinc Compounds , Ampicillin/analysis , Ampicillin/chemistry , Chitosan/chemistry , Biosensing Techniques/methods , Zinc Compounds/chemistry , Manganese/chemistry , Sulfides/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , beta-Lactamases/analysis , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Milk/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Animals
8.
Langmuir ; 40(19): 10261-10269, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693862

ABSTRACT

Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of ß-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.


Subject(s)
Calcium Phosphates , Carnosine , Dipeptidases , Enzymes, Immobilized , Manganese , Nanoparticles , Polyethyleneimine , Carnosine/chemistry , Carnosine/metabolism , Polyethyleneimine/chemistry , Manganese/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Dipeptidases/metabolism , Dipeptidases/chemistry , Serratia marcescens/enzymology , Biocatalysis
9.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696240

ABSTRACT

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Subject(s)
Humic Substances , Manganese , Oxidation-Reduction , Phenols , Manganese/chemistry , Phenols/chemistry , Anions , Manganese Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry
10.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719009

ABSTRACT

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Subject(s)
Adjuvants, Immunologic , Herpesvirus 1, Suid , Immunity, Cellular , Immunity, Humoral , Manganese , Nanoparticles , Polysaccharides, Bacterial , Tannins , Animals , Mice , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Tannins/chemistry , Tannins/pharmacology , Manganese/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/immunology , Herpesvirus 1, Suid/immunology , Pseudorabies Vaccines/immunology , Vaccines, Inactivated/immunology , Pseudorabies/prevention & control , Pseudorabies/immunology , Female , Cytokines/metabolism , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Polyphenols
11.
Water Res ; 257: 121656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677110

ABSTRACT

Schwertmannite (Sch) is considered as an effective remover of Chromium (Cr) due to its strong affinity for toxic Cr species. Since the instability of Sch, the environmental fate of Cr deserves attention during the transformation of Sch into a more stable crystalline phase. The ubiquitous manganese(II) (Mn(II)) probably affects the transformation of Sch and thus the environmental fate of Cr. Therefore, this study investigated the impact of Mn(II) on the transformation of Cr-absorbed Sch (Cr-Sch) and the associated behavior of SO42- and Cr. We revealed that the transformation products of Cr-Sch at pH 3.0 and 7.0 were goethite and Sch, respectively. The presence of Mn(II) weakened the crystallinity of the transformation products, and the trend was positively correlated with the concentration of Mn(II). However, Mn(II) changed the transformation products of Cr-Sch from hematite to goethite at pH 10.0. Mn(II) replaced Fe(III) in the mineral structures or formed Mn-O complexes with surface hydroxyl groups (-OH), thereby affecting the transformation pathways of Sch. The presence of Mn(II) enhanced the immobilization of Cr on minerals at pH 3.0 and 7.0. Sch is likely to provide an channel for electron transfer between Mn(II) and Cr(VI), which promotes the reduction of Cr(VI). Meanwhile, Mn(Ⅱ) induced more -OH production on the surface of secondary minerals, which played an important role in increasing the Cr fixation. In addition, part of the Mn(Ⅱ) was oxidized to Mn(Ⅲ)/Mn(Ⅳ) at pH 3.0 and pH 7.0. This study helps to predict the role of Mn(II) in the transformations of Cr-Sch in environments and design remediation strategies for Cr contamination.


Subject(s)
Chromium , Iron Compounds , Manganese , Minerals , Chromium/chemistry , Manganese/chemistry , Minerals/chemistry , Iron Compounds/chemistry , Phase Transition , Hydrogen-Ion Concentration , Ferric Compounds/chemistry
12.
J Mater Chem B ; 12(17): 4097-4117, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587869

ABSTRACT

Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.


Subject(s)
Immunotherapy , Manganese , Humans , Manganese/chemistry , Manganese/pharmacology , Immunotherapy/methods , Phototherapy/methods , Green Chemistry Technology , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Nanostructures/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Particle Size
13.
Chem Commun (Camb) ; 60(41): 5423-5426, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38683668

ABSTRACT

The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.


Subject(s)
Alkynes , Amino Acids , Coumarins , Fluorescent Dyes , Manganese , Peptides , Coumarins/chemistry , Coumarins/chemical synthesis , Catalysis , Manganese/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Peptides/chemistry , Alkynes/chemistry , Amino Acids/chemistry , Molecular Structure
14.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613974

ABSTRACT

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Subject(s)
Cobalt , Hydroxides , Manganese , Metronidazole , Cobalt/chemistry , Metronidazole/chemistry , Hydroxides/chemistry , Manganese/chemistry , Porosity , Surface Properties , Sulfites/chemistry , Catalysis , Particle Size , Density Functional Theory , Water Pollutants, Chemical/chemistry
15.
Food Chem ; 448: 139170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38579558

ABSTRACT

Current nanozyme applications rely heavily on peroxidase-like nanozymes and are limited to a specific temperature range, despite notable advancements in nanozyme development. In this work, we designed novel Mn-based metal organic frameworks (UoZ-4), with excellent oxidase mimic activity towards common substrates. UoZ-4 showed excellent oxidase-like activity (with Km 0.072 mM) in a wide range of temperature, from 10 °C to 100 °C with almost no activity loss, making it a very strong candidate for psychrophilic and thermophilic applications. Ascorbic acid, cysteine, and glutathione could quench the appearance of the blue color of oxTMB, led us to design a visual-based sensing platform for detection of total antioxidant capacity (TAC) in cold, mild and hot conditions. The visual mode successfully assessed TAC in citrus fruits with satisfactory recovery and precisions. Cold/hot adapted and magnetic property will broaden the horizon of nanozyme applications and breaks the notion of the temperature limitation of enzymes.


Subject(s)
Antioxidants , Citrus , Fruit , Manganese , Metal-Organic Frameworks , Oxidoreductases , Temperature , Citrus/chemistry , Citrus/metabolism , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Fruit/chemistry , Fruit/metabolism , Manganese/metabolism , Manganese/chemistry , Manganese/analysis , Metal-Organic Frameworks/chemistry , Oxidoreductases/metabolism , Oxidoreductases/chemistry
16.
ACS Nano ; 18(16): 10885-10901, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38587876

ABSTRACT

Hypochlorous acid (HClO), as a powerful oxidizer, is obtained from the oxidation of Cl- ions during the electrochemical therapy (EChT) process for cancer therapy. However, the extracellular generated HClO is inadequate to inhibit effective tumor cell death. Herein, manganese-doped potassium chloride nanocubes (MPC NCs) fabricated and modified with amphipathic polymer PEG (PMPC NCs) to function as massive three-dimensional nanoelectrodes (NEs) were developed to enhance the generation of HClO for electrochemical immunotherapy under an alternating electric field. Under an square-wave alternating current (AC) electric field, the generation of HClO was boosted by PMPC NEs due to the enlarged active surface area, enhanced mass transfer rate, and improved electrocatalytic activity. Notably, PMPC NEs upregulated the intracellular HClO concentration to induce robust immunogenic cell death (ICD) under an AC electric field. Meanwhile, the electric-triggered release of Mn2+ effectively stimulated dendritic cells (DCs) maturation. In vivo results illustrated that PMPC-mediated EChT inhibited tumor growth and triggered the promotion of the immune response to regulate the tumor immune microenvironment. Based on the potent antitumor immunity, PMPC-mediated EChT was further combined with an immune checkpoint inhibitor (αCTLA-4) to realize combined EChT-immunotherapy, which demonstrated enhanced tumor inhibition of the primary tumors and an abscopal effect on distant tumors. To summarize, our work highlights the application of electrochemical-immunotherapy technology in tumor therapy.


Subject(s)
Immunotherapy , Manganese , Manganese/chemistry , Mice , Animals , Electrodes , Humans , Electrochemical Techniques , Cell Line, Tumor , Mice, Inbred C57BL , Cell Proliferation/drug effects , Mice, Inbred BALB C
17.
Nat Commun ; 15(1): 3534, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670989

ABSTRACT

Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.


Subject(s)
Adenosine Triphosphate , Glutamate-Ammonia Ligase , Glutamic Acid , Glutamine , Manganese , Nanostructures , Neurons , Polyphosphates , Glutamate-Ammonia Ligase/metabolism , Humans , Polyphosphates/chemistry , Polyphosphates/metabolism , Polyphosphates/pharmacology , Nanostructures/chemistry , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Neurons/metabolism , Neurons/drug effects , Glutamine/metabolism , Manganese/metabolism , Manganese/chemistry , Biocompatible Materials/chemistry
18.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602496

ABSTRACT

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Subject(s)
Carboxylic Acids , Mutation , Oxygen , Photosystem II Protein Complex , Calcium/metabolism , Calcium/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Electron Spin Resonance Spectroscopy , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared
19.
Food Chem ; 450: 139152, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653046

ABSTRACT

The development of a robust electrocatalyst for the electrochemical sensor for hazardous pesticides will reduce its effects on the ecosystem. Herein, we synthesized the robust manganese cobalt phosphide (MnCoP) - Core-shell as an electrochemical sensor for the determination of hazardous pesticide methyl parathion (MP). The MnCoP- Core-shell was prepared with the sustainable self-template route can help with the larger surface area. The Core-shell structure of MnCoP possesses a higher active surface area which increases the electrocatalytic performance and is utilized to improve the electrochemical MP reduction with the synergism of the core and shell structure. Remarkably, it realizes the higher sensitivity (0.014 µA µM-1 cm-2) of MnCoP- Core-shell/GCE achieves towards MP with lower limit of detection (LoD 50 nM) and exceptional recovery rate of MP in vegetable samples are achieved with the differential pulse voltammetry (DPV) technique. The MnCoP- Core-shell electrode reserved their superior electrochemical performances with high reproducibility and repeatability. This prominent activity of the MnCoP core-shell towards the MP in real sample analysis, makes it a promising electrochemical sensor for the detection of MP.


Subject(s)
Cobalt , Electrochemical Techniques , Food Contamination , Manganese , Methyl Parathion , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Cobalt/chemistry , Cobalt/analysis , Methyl Parathion/analysis , Food Contamination/analysis , Manganese/chemistry , Manganese/analysis , Limit of Detection , Phosphines/chemistry , Phosphines/analysis , Vegetables/chemistry , Electrodes , Pesticides/analysis , Pesticides/chemistry
20.
Food Chem ; 451: 139378, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670019

ABSTRACT

Overcoming the intense variation of enzymatic activity among different temperatures is very critical in catalytic medicine and catalytic biology. Here, Mn-based metal-organic framework-based wide-temperature-adaptive mesoporous artificial enzymes (Mn-TMA-MOF) were designed and synthesized. The oxidase-like Mn-TMA-MOF showed excellent catalytic activity at 0-50 °C and avoided the activity loss and instability due to temperature variation that occurred. The excellent oxidase-like properties of Mn-TMA-MOF with wide temperature adaptativeness are mainly ascribed to the mixed oxidized state (Mn3+/Mn2+) and high substrate affinity (Km = 0.034 mM) of Mn. Moreover, the mesopore-micropores two-level structure of Mn-TMA-MOF provides a large space and surface area for enzyme catalysis. Based on the stability of Mn-TMA-MOF, we developed a colorimetric sensor that can detect total antioxidant capacity in fruits with a limit of detection up to 0.59 µM.


Subject(s)
Antioxidants , Manganese , Metal-Organic Frameworks , Oxidoreductases , Temperature , Metal-Organic Frameworks/chemistry , Manganese/chemistry , Antioxidants/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Porosity , Catalysis , Fruit/chemistry , Fruit/enzymology , Colorimetry , Oxidation-Reduction , Biocatalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...