Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.998
Filter
1.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710565

ABSTRACT

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Subject(s)
Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
2.
Food Res Int ; 187: 114329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763632

ABSTRACT

The utilization of non-animal-derived materials to imitate cartilage is critical for the advancement of plant-based simulated meat. In this study, gellan gum (GG), konjac glucomannan (KGM), and wheat fiber (WF) were used to construct hydrogel, and the mechanical strength, water properties, and microstructure were regulated by constructing Ca2+ cross-links and moisture control. The hardness, chewiness, resilience, shear force, and shear energy of the Ca2+ cross-linked samples were significantly improved. Extrusion dehydration further changes the related mechanical properties of the hydrogel and results in a tighter microstructure. The findings suggest that the establishment of Ca2+ cross-links and water regulation are efficacious techniques for modifying the texture of the GG/KGM/WF composite hydrogel. Correlation analysis and sensory evaluation showed that the test indexes and sensory scores of the samples with Ca2+ crosslinking and 80 % moisture content were similar to chicken breast cartilage, and the samples with Ca2+ crosslinking and 70 % moisture content were similar to pig crescent bone. This study presents a framework for designing edible cartilage simulators using polysaccharide hydrogels, with implications for enhancing the resemblance of plant-based meat products to real meat and expanding the range of vegetarian offerings available.


Subject(s)
Hydrogels , Mannans , Polysaccharides, Bacterial , Triticum , Polysaccharides, Bacterial/chemistry , Mannans/chemistry , Animals , Hydrogels/chemistry , Triticum/chemistry , Cartilage/chemistry , Water/chemistry , Cross-Linking Reagents/chemistry , Chickens , Calcium/analysis , Calcium/chemistry , Dietary Fiber/analysis
3.
Food Res Int ; 187: 114425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763673

ABSTRACT

In this study, composite gel was prepared from konjac glucomannan (KGM) and fibrin (FN). Composite gels with different concentration ratios were compared in terms of their mechanical properties, rheological properties, water retention, degradation rate, microstructure and biocompatibility. The results showed that the composite gels had better gel strength and other properties than non-composite gels. In particular, composite hydrogels with low Young's modulus formed when the KGM concentration was 0.8% and the FN concentration was 1.2%. The two components were cross linked through hydrogen-bond interaction, which formed a more stable gel structure with excellent water retention and in-vitro degradation rates, which were conducive to myogenic differentiation of ectomesenchymal stem cells (EMSCs). KGM-FN composite gel was applied to the preparation of cell-culture meat, which had similar texture properties and main nutrients to animal meat as well as higher content of dry base protein and dry base carbohydrate.


Subject(s)
Fibrin , Hydrogels , Mannans , Rheology , Mannans/chemistry , Hydrogels/chemistry , Fibrin/chemistry , Animals , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells , Meat , Cell Differentiation , Elastic Modulus , Cell Culture Techniques
4.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763727

ABSTRACT

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Emulsions , Escherichia coli , Fruit , Mannans , alpha-Cyclodextrins , alpha-Cyclodextrins/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Mannans/chemistry , Mannans/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fruit/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Food Preservation/methods , Staphylococcus aureus/drug effects , Food Packaging/methods , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Drug Liberation
5.
Langmuir ; 40(19): 10305-10312, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696716

ABSTRACT

The limited elasticity and inadequate bonding of hydrogels made from guar gum (GG) significantly hinder their widespread implementation in personalized wearable flexible electronics. In this study, we devise GG-based self-adhesive hydrogels by creating an interpenetrating network of GG cross-linked with acrylic, 4-vinylphenylboronic acid, and Ca2+. With the leverage of the dynamic interactions (hydrogen bonds, borate ester bonds, and coordination bonds) between -OH in GG and monomers, the hydrogel exhibits a high stretchability of 700%, superior mechanical stress of 110 kPa, and robust adherence to several substrates. The adhesion strength of 54 kPa on porcine skin is obtained. Furthermore, the self-adhesive hydrogel possesses stable conductivity, an elevated gauge factor (GF), and commendable durability. It can be affixed to the human body as a strain sensor to obtain precise monitoring of human movement behavior. Our research offers possibilities for the development of GG-based hydrogels and applications in wearable electronics and medical monitoring.


Subject(s)
Electric Conductivity , Galactans , Hydrogels , Mannans , Plant Gums , Hydrogels/chemistry , Mannans/chemistry , Plant Gums/chemistry , Galactans/chemistry , Animals , Wearable Electronic Devices , Humans , Swine , Adhesives/chemistry
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732045

ABSTRACT

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Subject(s)
Galactose , Galactose/analogs & derivatives , Galactose/metabolism , Galactose/chemistry , Aspergillus/metabolism , Aspergillus/genetics , Lectins/metabolism , Lectins/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Mannans/chemistry , Animals , Serum Albumin, Bovine/chemistry
7.
Carbohydr Res ; 540: 109145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759341

ABSTRACT

The cell wall of endophytic strain Rathayibacter oskolensis VKM Ac-2121T (family Microbacteriaceae, class Actinomycetes) was found to contain neutral and acidic glycopolymers. The neutral polymer is a block-type rhamnomannan partially should be substitutied by xylose residues, [→2)-α-[ß-D-Xylp-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼30 [→2)-α-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼45. The acidic polymer has branched chain, bearing lactate and pyruvate residues, →4)-α-D-[S-Lac-(2-3)-α-L-Rhap-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-[4,6-R-Pyr]-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’. The structures of both glycopolymers were not described in the Gram-positive bacteria to date. The glycopolymers were studied by chemical and NMR spectroscopic methods. The results of this study provide new data on diversity of bacterial glycopolymers and may prove useful in the taxonomy of the genus Rathayibacter and for understanding the molecular mechanisms of interaction between plants and plant endophytes.


Subject(s)
Cell Wall , Xylose , Cell Wall/chemistry , Cell Wall/metabolism , Xylose/chemistry , Xylose/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Mannans/chemistry , Carbohydrate Sequence , Actinobacteria/chemistry , Actinobacteria/metabolism , Rhamnose/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides/chemistry , Actinomycetales/chemistry , Actinomycetales/metabolism
8.
Int J Biol Macromol ; 269(Pt 1): 132051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777687

ABSTRACT

The impact of guar gum (GG), crude algae ethanolic extract (CAEE), and turmeric essential oil (TEO) incorporated edible coating formulations on the quality of cut potatoes was investigated at room temperature (27 ±â€¯3 °C, 70-85 % RH) storage using a rotatable central composite design. Besides, 30 % glycerol, 5 % calcium chloride, and 3 % ascorbic acid (w/w) were added to the coating solution as additives. The surface color, respiration rate, water vapor transmission rate, visible mold growth, and sensory analysis were assessed after seven days of storage. The inclusion of ascorbic acid and TEO in edible coating demonstrated a more effective delay in browning. The coated potatoes had lower OTR, CTR, and WVTR values for GG concentrations of 0.5 to 1 g/100 mL than the control. Compared to additives, higher concentrations of GG improved response parameters. The WVTR value of coated potatoes was significantly impacted by the interaction between CAEE and TEO with GG. Incorporating CAEE and TEO into the formulations of guar gum led to a reduction in the permeability of the coating to oxygen and water vapor. The seven days of extended shelf life compared to two days of control were observed with the optimized coating formulation. Furthermore, the application of the coating treatment proved effective in preventing enzymatic browning and creating a barrier against moisture and gases, contributing to prolonged freshness during extended storage periods.


Subject(s)
Food Storage , Galactans , Mannans , Plant Gums , Solanum tuberosum , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Mannans/pharmacology , Solanum tuberosum/chemistry , Food Storage/methods , Food Preservation/methods
9.
Int J Biol Macromol ; 269(Pt 2): 132175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729497

ABSTRACT

Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.


Subject(s)
Cellulose , Emulsions , Hydrophobic and Hydrophilic Interactions , Nanofibers , Oils , Water , Emulsions/chemistry , Nanofibers/chemistry , Oils/chemistry , Water/chemistry , Cellulose/chemistry , Surface Properties , Biodegradation, Environmental , Mannans/chemistry
10.
Int J Biol Macromol ; 269(Pt 1): 131995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692529

ABSTRACT

In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-ß-D-Manp-(1 and 4)-ß-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.


Subject(s)
Aging , Dendrobium , Mannans , Animals , Dendrobium/chemistry , Mice , Mannans/pharmacology , Mannans/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Cognition Disorders/drug therapy , Male , Apoptosis/drug effects , Galactose
11.
J Environ Sci (China) ; 144: 1-14, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802222

ABSTRACT

Nanoscale zero-valent iron (NZVI), which has the advantages of small particle size, large specific surface area, and high reactivity, is often injected into contaminated aquifers in the form of slurry. However, the prone to passivation and agglomeration as well as poor stability and mobility of NZVI limit the further application of this technology in fields. Therefore, sulfided NZVI loaded on reduced graphene oxide (S-NZVI/rGO) and guar gum (GG) with shear-thinning properties as stabilizers were used to synthesize S-NZVI/rGO@GG slurries. SEM, TEM, and FT-IR confirmed that the dispersion and anti-passivation of NZVI were optimized in the coupled system. The stability and mobility of the slurry were improved by increasing the GG concentration, enhancing the pH, and decreasing the ionic strength and the presence of Ca2+ ions, respectively. A modified advection-dispersion equation (ADE) was used to simulate the transport experiments considering the strain and physicochemical deposition/release. Meanwhile, colloidal filtration theory (CFT) demonstrated that Brownian motion plays a dominant role in the migration of S-NZVI/rGO@GG slurry, and the maximum migration distance can be increased by appropriately increasing the injection rate. Extended-Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed that the excellent stability and migration of S-NZVI/rGO@GG slurry mainly came from the GG spatial forces. This study has important implications for the field injection of S-NZVI/rGO@GG slurry. According to the injection parameters, the injection range of S-NZVI/rGO@GG slurry is effectively controlled, which lays the foundation for the promotion of application in actual fields.


Subject(s)
Galactans , Graphite , Iron , Mannans , Plant Gums , Graphite/chemistry , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Iron/chemistry , Models, Chemical , Metal Nanoparticles/chemistry
12.
Int J Pharm ; 656: 124076, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569976

ABSTRACT

Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.


Subject(s)
Carnosine , Mannans , Vaccines, Subunit , Zinc , Mannans/chemistry , Mannans/administration & dosage , Mannans/immunology , Animals , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Zinc/chemistry , Zinc/administration & dosage , Carnosine/administration & dosage , Carnosine/chemistry , Female , Immunoglobulin G/blood , Mice , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Ovalbumin/immunology , Ovalbumin/administration & dosage , Mice, Inbred C57BL , Polymers/chemistry , Polymers/administration & dosage , Mice, Inbred BALB C , Drug Carriers/chemistry
13.
Food Chem ; 449: 139229, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581793

ABSTRACT

The unique high isoelectric point of lysozyme (LYZ) restricts its application in composite antibacterial coating due to the unfavorable liability to electrostatic interaction with other components. In this work, the antibacterial activity of a dispersible LYZ-carboxymethyl konjac glucomannan (CMKGM) polyelectrolyte complex was evaluated. Kinetic analysis revealed that, compared with free LYZ, the complexed enzyme exhibited decreased affinity (Km) but markedly increased Vmax against Micrococcus lysodeikticus, and QCM and dynamic light scattering analysis confirmed that the complex could bind with the substrate but in a much lower ratio. The complexation with CMKGM did not alter the antibacterial spectrum of LYZ, and the complex exerted antibacterial function by delaying the logarithmic growth phase and impairing the cell integrity of Staphylococcus aureus. Since the LYZ-CMKGM complex is dispersible in water and could be assembled easily, it has great potential as an edible coating in food preservation.


Subject(s)
Anti-Bacterial Agents , Mannans , Muramidase , Staphylococcus aureus , Mannans/chemistry , Mannans/pharmacology , Mannans/metabolism , Muramidase/chemistry , Muramidase/metabolism , Muramidase/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Kinetics , Micrococcus/drug effects , Micrococcus/growth & development
14.
Expert Opin Drug Deliv ; 21(4): 663-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680108

ABSTRACT

BACKGROUND: Chemo-immunotherapy modifies the tumor microenvironment to enhance the immune response and improve chemotherapy. This study introduces a dual-armed chemo-immunotherapy strategy combating breast tumor progression while re-polarizing Tumor-Associated Macrophage (TAM) using prodigiosin-loaded mannan-coated magnetic nanoparticles (PG@M-MNPs). METHODS: The physicochemical properties of one-step synthetized M-MNPs were analyzed, including X-ray diffraction, FTIR, DLS, VSM, TEM, zeta potential analysis, and drug loading content were carried out. Biocompatibility, cancer specificity, cellular uptake, and distribution of PG@M-MNPs were investigated using fluorescence and confocal laser scanning microscopy, and flow cytometry. Furthermore, the expression levels of IL-6 and ARG-1 after treatment with PG and PG@M-MNPs on M1 and M2 macrophage subsets were studied. RESULTS: The M-MNPs were successfully synthesized and characterized, demonstrating a size below 100 nm. The release kinetics of PG from M-MNPs showed sustained and controlled patterns, with enzyme-triggered release. Cytotoxicity assessments revealed an enhanced selectivity of PG@M-MNPs against cancer cells and minimal effects on normal cells. Additionally, immuno-modulatory activity demonstrates the potential of PG@M-MNPs to change the polarization dynamics of macrophages. CONCLUSION: These findings highlight the potential of a targeted approach to breast cancer treatment, offering new avenues for improved therapeutic outcomes and patient survival.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Magnetite Nanoparticles , Mannose , Tumor Microenvironment , Tumor-Associated Macrophages , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Magnetite Nanoparticles/chemistry , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mannose/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Cell Line, Tumor , Immunomodulation/drug effects , Animals , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy/methods , Mannans/chemistry , Mannans/administration & dosage , Mice , Drug Delivery Systems
15.
Food Funct ; 15(10): 5382-5396, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639045

ABSTRACT

Controlling the structure and viscosity of food can influence the development of diet-related diseases. Food viscosity has been linked with health through its impact on human digestion and gastrointestinal transit, however, there is limited understanding of how the viscosity of food regulates gastric emptying. Here, we used model food preparations with different viscosities using guar gum, to explore the mechanism underlying the influence of viscosity on gastric motility, gastric emptying and postprandial blood glucose. Based on experiments in human volunteers and animals, we demonstrated that high viscosity meals increased gastric antrum area and gastric retention rate. Viscosity also affected gut hormone secretion, reduced the gene expression level of interstitial cells of Cajal, resulting in a delay of gastric emptying and limiting the increase in postprandial glucose. This improved mechanistic understanding of food viscosity during gastric digestion is important for designing new foods to benefit human health.


Subject(s)
Galactans , Gastric Emptying , Mannans , Plant Gums , Humans , Viscosity , Mannans/chemistry , Mannans/pharmacology , Plant Gums/chemistry , Galactans/chemistry , Galactans/pharmacology , Animals , Male , Postprandial Period , Adult , Blood Glucose/metabolism , Female , Food , Mice , Digestion
16.
Int J Biol Macromol ; 267(Pt 2): 131521, 2024 May.
Article in English | MEDLINE | ID: mdl-38608976

ABSTRACT

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower ß-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher ß-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.


Subject(s)
Emulsions , Fish Oils , Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Solubility , Soybean Proteins , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Plant Gums/chemistry , Emulsions/chemistry , Soybean Proteins/chemistry , Galactans/chemistry , Fish Oils/chemistry , Anions/chemistry
17.
Int J Biol Macromol ; 267(Pt 2): 131495, 2024 May.
Article in English | MEDLINE | ID: mdl-38614180

ABSTRACT

Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the ß-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.


Subject(s)
Emulsions , Eugenol , Food Packaging , Mannans , Eugenol/chemistry , Eugenol/pharmacology , Mannans/chemistry , Emulsions/chemistry , Food Packaging/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests
18.
Int J Biol Macromol ; 267(Pt 2): 131591, 2024 May.
Article in English | MEDLINE | ID: mdl-38621574

ABSTRACT

In the present study, a novel environment friendly dry method for preparation of guar gum maleate (GGM) with varying degrees of substitution (DS; 0.02-1.04) was optimized. GGM with a maximum DS of 1.04 was successfully synthesized using guar gum (GG) and maleic anhydride (MA) in proportion of 1: 1 at 80 °C with 4 h of reaction time. The activation energy for the reaction was determined to be 36.91 ± 3.61 kJ mol-1 with pre-exponential factor of 1392 min-1. Esterification of GG was confirmed by FT-IR and 13C NMR. Analysis using size exclusion chromatography (SEC) indicated a decrease in weight average molecular weight (Mw) of the polymer with an increase in polydispersity index (PDI) due to esterification. In comparison with GG, GGM displayed increased hydrophobicity and reduced thermal stability, as analysed by differential scanning calorimetry (DSC). Rheological studies of GGM revealed that initial apparent viscosity decreased with increasing DS. For the first time, the study offered valuable insights on GGM synthesis under dry solvent-less reaction conditions enabling simpler and scalable synthesis process.


Subject(s)
Galactans , Maleates , Mannans , Plant Gums , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Kinetics , Maleates/chemistry , Molecular Weight , Viscosity , Esterification , Rheology , Temperature , Chemistry Techniques, Synthetic , Hydrophobic and Hydrophilic Interactions
19.
J Agric Food Chem ; 72(18): 10451-10458, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38632679

ABSTRACT

In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.


Subject(s)
Catalytic Domain , Enzyme Stability , Mannans , Mannosidases , Rumen , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Mannosidases/genetics , Mannosidases/metabolism , Mannosidases/chemistry , Mannans/chemistry , Mannans/metabolism , Hydrolysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Substrate Specificity , beta-Mannosidase/genetics , beta-Mannosidase/chemistry , beta-Mannosidase/metabolism , Kinetics
20.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Article in English | MEDLINE | ID: mdl-38636760

ABSTRACT

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Subject(s)
Arecaceae , Germination , Mannans , Seeds , Seeds/growth & development , Seeds/chemistry , Mannans/chemistry , Arecaceae/chemistry , Arecaceae/growth & development , Trees , Lignin/chemistry , Lignin/metabolism , Endosperm/chemistry , Endosperm/metabolism , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...