Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.694
Filter
1.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711073

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Subject(s)
Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
2.
Org Lett ; 26(20): 4346-4350, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38722236

ABSTRACT

Here we report the first total synthesis of the conjugation-ready tetrasaccharide repeating unit of Shewanella japonica type strain KMM 3299T. The presence of rare deoxyamino sugars and installation of three consecutive 1,2-cis glycosidic linkages makes the synthesis formidable. The challenging late-stage oxidation was overcome by using a galacturonate donor. The total synthesis was completed via a longest linear sequence of 22 steps in an overall yield of 3.5% starting from d-mannose.


Subject(s)
Oligosaccharides , Shewanella , Shewanella/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Molecular Structure , Carbohydrate Sequence , Mannose/chemistry , Oxidation-Reduction
3.
Zhonghua Yi Xue Za Zhi ; 104(17): 1521-1528, 2024 May 07.
Article in Chinese | MEDLINE | ID: mdl-38706060

ABSTRACT

Objective: To investigate the therapeutic effect of sodium oligomannate on experimental autoimmune encephalomyelitis (EAE) mice and its effect on intestinal flora and microglia polarization. Methods: Fifty female C57BL/6 mice were randomly divided by the random number table method into the control group, EAE model group and low-dose, medium-dose and high-dose group of sodium oligomannate with 10 mice each. The EAE model group and each dose group of sodium oligomannate were induced by subcutaneous multi-point injection of MOG35-55 peptide for the EAE model. Mice in the low-dose, medium-dose and high-dose group of sodium oligomannate were gavaged sodium oligomannate 40, 80, and 160 mg/kg twice a day, respectively, starting from the day after modeling. The intervention continued until the mice were euthanized. Observe the incidence of disease, infiltration of inflammatory cells in spinal cord tissue, and demyelination in each group of mice.. The mice feces were collected and tested for intestinal flora by 16S rRNA sequencing. Immunofluorescence staining was used to observe the expression of Iba-1 protein, an activation indicator of microglia, in spinal cord tissue. The protein levels of M1 type markers iNOS, CD16, and M2 type markers Arg1 and CD206 were tsested in the spinal cord by Western blotting and immunofluorescence staining. Results: None of the mice in the control group developed any disease, while the mice in other groups showed varying degrees of disease, including tail sag, unstable walking, and hind limb weakness. Compared with the EAE model group, the incubation period was prolonged, the peak was delayed and the peak neurological dysfunction score was reduced (3.6±0.6 vs 3.0±0.6, 2.8±0.5, 1.8±0.6, P<0.05) in all sodium oligomannate groups, with milder symptoms at higher doses. The differences in pairwise comparisons between the groups were all statistically significant (all P<0.05). In the control group, no inflammatory cell infiltration or demyelinating changes were observed in spinal cord tissue. In the EAE model group, inflammatory cell infiltration and demyelination changes were evident in the spinal cord tissues at the onset peak. Compared with the EAE model group, inflammatory cell infiltration and demyelination were ameliorated in all sodium oligomannate groups. Compared with the control group, the relative abundance of Bacteroidota decreased and that of Firmicutes increased in the EAE model group. Compared with the EAE model group, the relative abundance of Bacteroidota increased and that of Firmicutes decreased, the ratio of Bacteroidetes to Firmicutes increased (0.20±0.05 vs 0.37±0.02,0.61±0.03,0.91±0.08,P<0.01) in the respective dose groups. The difference in pairwise comparison between groups was statistically significant (P<0.01), with greater changes at higher doses. Compared with the control group, the levels of Iba-1、CD16 and iNOS increased, while the levels of Arg-1 and CD206 decreased in the EAE model group. Compared with the EAE model group, the levels of Iba-1、CD16 and iNOS decreased, while the levels of Arg-1 and CD206 increased in all sodium oligomannate groups(P<0.01), with greater changes at higher doses. The difference between groups was statistically significant (P<0.01). Conclusions: Sodium oligomannate has a therapeutic effect on EAE and is dose-dependent. Its mechanism of action may be related toimproving intestinal microecology and the modulation of microglial polarization.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Mice, Inbred C57BL , Microglia , Spinal Cord , Animals , Mice , Female , Disease Models, Animal , Mannose
4.
Mar Drugs ; 22(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786584

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Oligosaccharides , Animals , Gastrointestinal Microbiome/drug effects , Mice , Oligosaccharides/pharmacology , Male , Neuroprotective Agents/pharmacology , Dysbiosis/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopaminergic Neurons/drug effects , Parkinson Disease/drug therapy , Mannose/pharmacology , Mannose/chemistry , Mannose/analogs & derivatives , Glucuronates/pharmacology
5.
Carbohydr Res ; 540: 109124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701680

ABSTRACT

A sensitive and precise HPLC-DAD method with pre-column PMP derivatization was established and validated, for analyzing the polysaccharides in Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN) isolates, after acid hydrolysis. And the HPLC fingerprint profiling was used to analyze its monosaccharide composition. The monosaccharide concentration-peak area calibration curve was of good linearity (R2 > 0.99), over the range of 0.016-0.08 mg/mL for mannose or 0.24-1.20 mg/mL for glucose, with high recovery of 93-105 % for quality control samples. The intra-day RSD values of mannose and glucose concentration were less than 2.5 % and 2.1 %, respectively, and their inter-day RSD values were less than 4.3 % and 2.2 %, respectively, and remained stable for up to 14 days. This method also remained durable against changes in chromatographic parameters, but it's susceptible to the flow rate of mobile phase. Additionally, the method was applied to analyze the content of mannose and glucose in 22 batches BCG-PSN powder and 17 batches BCG-PSN injection. The results showed that the HPLC-DAD fingerprint spectra of all the BCG-PSN powder and BCG-PSN injection samples had a high degree of similarity, with the similar indexes up to 0.999 and 0.998, respectively. The HPLC-DAD method with pre-column PMP derivatization is highly rapid, effective, visual, and accurate for determination of monosaccharide contents. The validated method was successfully applied to the analysis of polysaccharide in both BCG-PSN powder and injection.


Subject(s)
Monosaccharides , Mycobacterium bovis , Monosaccharides/analysis , Monosaccharides/chemistry , Chromatography, High Pressure Liquid , Polysaccharides, Bacterial/chemistry , Nucleic Acids/analysis , Nucleic Acids/chemistry , Mannose/chemistry , Mannose/analysis
6.
Carbohydr Res ; 540: 109138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703662

ABSTRACT

High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.


Subject(s)
Chickens , Egg Yolk , Oligosaccharides , Animals , Egg Yolk/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Asparagine/chemistry , Mannose/chemistry , Threonine/chemistry , Consensus Sequence , Glycine/chemistry , Glycopeptides/chemistry
7.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
8.
Expert Opin Drug Deliv ; 21(4): 663-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680108

ABSTRACT

BACKGROUND: Chemo-immunotherapy modifies the tumor microenvironment to enhance the immune response and improve chemotherapy. This study introduces a dual-armed chemo-immunotherapy strategy combating breast tumor progression while re-polarizing Tumor-Associated Macrophage (TAM) using prodigiosin-loaded mannan-coated magnetic nanoparticles (PG@M-MNPs). METHODS: The physicochemical properties of one-step synthetized M-MNPs were analyzed, including X-ray diffraction, FTIR, DLS, VSM, TEM, zeta potential analysis, and drug loading content were carried out. Biocompatibility, cancer specificity, cellular uptake, and distribution of PG@M-MNPs were investigated using fluorescence and confocal laser scanning microscopy, and flow cytometry. Furthermore, the expression levels of IL-6 and ARG-1 after treatment with PG and PG@M-MNPs on M1 and M2 macrophage subsets were studied. RESULTS: The M-MNPs were successfully synthesized and characterized, demonstrating a size below 100 nm. The release kinetics of PG from M-MNPs showed sustained and controlled patterns, with enzyme-triggered release. Cytotoxicity assessments revealed an enhanced selectivity of PG@M-MNPs against cancer cells and minimal effects on normal cells. Additionally, immuno-modulatory activity demonstrates the potential of PG@M-MNPs to change the polarization dynamics of macrophages. CONCLUSION: These findings highlight the potential of a targeted approach to breast cancer treatment, offering new avenues for improved therapeutic outcomes and patient survival.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Magnetite Nanoparticles , Mannose , Tumor Microenvironment , Tumor-Associated Macrophages , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Magnetite Nanoparticles/chemistry , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mannose/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Cell Line, Tumor , Immunomodulation/drug effects , Animals , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy/methods , Mannans/chemistry , Mannans/administration & dosage , Mice , Drug Delivery Systems
9.
Compr Rev Food Sci Food Saf ; 23(3): e13326, 2024 05.
Article in English | MEDLINE | ID: mdl-38572572

ABSTRACT

A growing demand for sustainable, alternative protein sources that are nutrient-dense, such as microorganisms, and insects, has gradually evolved. When paired with effective processing techniques, yeast cells contain substantial substances that could supply the population's needs for food, medicine, and fuel. This review article explores the potential of yeast proteins as a sustainable and viable alternative to animal and plant-based protein sources. It highlights the various yeast protein extraction methods including both mechanical and non-mechanical methods. The application of nanoparticles is one example of the fast-evolving technology used to damage microbial cells. SiO2 or Al2O3 nanoparticles break yeast cell walls and disrupt membranes, releasing intracellular bioactive compounds. Succinylation of yeast protein during extraction can increase yeast protein extraction rate, lower RNA concentration, raise yeast protein solubility, increase amino acid content, and improve yeast protein emulsification and foaming capabilities. Combining physical and enzymatic extraction methods generates the most representative pool of mannose proteins from yeast cell walls. Ethanol or isoelectric precipitation purifies mannose proteins. Mannoproteins can be used as foamy replacement for animal-derived components like egg whites due to their emulsification, stability, and foaming capabilities. Yeast bioactive peptide was separated by ultrafiltration after enzymatic hydrolysis of yeast protein and has shown hypoglycemic, hypotensive, and oxidative action in vitro studies. Additionally, the review delves into the physicochemical properties and stability of yeast-derived peptides as well as their applications in the food industry. The article infers that yeast proteins are among the promising sources of sustainable protein, with a wide range of potential applications in the food industry.


Subject(s)
Mannose , Saccharomyces cerevisiae , Animals , Silicon Dioxide , Food Industry , Fungal Proteins , Plant Proteins/chemistry , Peptides
10.
ACS Biomater Sci Eng ; 10(5): 3017-3028, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38655791

ABSTRACT

Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.


Subject(s)
Cryogels , Oxidation-Reduction , Polyethylene Glycols , Cryogels/chemistry , Polyethylene Glycols/chemistry , Animals , Concanavalin A/chemistry , Concanavalin A/metabolism , Methacrylates/chemistry , Mice , Mannose/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Sulfhydryl Compounds/chemistry , Streptavidin/chemistry , Streptavidin/metabolism , Proteins/chemistry , Proteins/metabolism , Biotin/chemistry , Biotin/metabolism , Biotin/analogs & derivatives , Porosity
11.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mannose/pharmacology , Mannose/metabolism , TOR Serine-Threonine Kinases/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Mice , Male , Molecular Docking Simulation , Mice, Inbred C57BL , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects
12.
Analyst ; 149(10): 2942-2955, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38597575

ABSTRACT

Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.


Subject(s)
Lipid Metabolism , Mannose , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Mannose/metabolism , Mannose/chemistry , A549 Cells , Proteins/metabolism , Proteins/analysis , Bronchi/metabolism , Bronchi/cytology
13.
Cancer Lett ; 591: 216883, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615929

ABSTRACT

High expression of programmed cell death protein 1 (PD-1), a typical immune checkpoint, results in dysfunction of T cells in tumor microenvironment. Antibodies and inhibitors against PD-1 or its ligand (PD-L1) have been widely used in various malignant tumors. However, the mechanisms by which PD-1 is regulated are not fully understood. Here, we report a mechanism of PD-1 degradation triggered by d-mannose and the universality of this mechanism in anti-tumor immunity. We show that d-mannose inactivates GSK3ß via promoting phosphorylation of GSK3ß at Ser9, thereby leading to TFE3 translocation to nucleus and subsequent PD-1 proteolysis induced by enhanced lysosome biogenesis. Notably, combination of d-mannose and PD-1 blockade exhibits remarkable tumor growth suppression attributed to elevated cytotoxicity activity of T cells in vivo. Furthermore, d-mannose treatment dramatically improves the therapeutic efficacy of MEK inhibitor (MEKi) trametinib in vivo. Our findings unveil a universally unrecognized anti-tumor mechanism of d-mannose by destabilizing PD-1 and provide strategies to enhance the efficacy of both immune checkpoint blockade (ICB) and MEKi -based therapies.


Subject(s)
Lysosomes , Mannose , Programmed Cell Death 1 Receptor , T-Lymphocytes , Programmed Cell Death 1 Receptor/metabolism , Lysosomes/metabolism , Animals , Humans , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Mannose/pharmacology , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Pyrimidinones/pharmacology , Phosphorylation , Pyridones/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mice, Inbred C57BL , Proteolysis , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
14.
Food Microbiol ; 121: 104519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637081

ABSTRACT

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Subject(s)
Mannose , Salmonella typhimurium , Salmonella typhimurium/genetics , Mannose/metabolism , Spinacia oleracea , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Adhesins, Bacterial/genetics , Bacterial Adhesion/genetics
15.
Molecules ; 29(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611895

ABSTRACT

There is a pressing need for efficacious therapies in the field of respiratory diseases and infections. Lipid nanocarriers, administered through aerosols, represent a promising tool for maximizing therapeutic concentration in targeted cells and minimizing systemic exposure. However, this approach requires the application of efficient and safe nanomaterials. Palmitoylethanolamide (PEA), an endocannabinoid-like endogenous lipid, plays a crucial role in providing protective mechanisms during inflammation, making it an interesting material for preparing inhalable lipid nanoparticles (LNPs). This report aims to preliminarily explore the in vitro behavior of LNPs prepared with PEA (PEA-LNPs), a new inhalable inflammatory-targeted nanoparticulate drug carrier. PEA-LNPs exhibited a size of about 250 nm, a rounded shape, and an marked improvement in PEA solubility in comparison to naked PEA, indicative of easily disassembled nanoparticles. A twin glass impinger instrument was used to screen the aerosol performance of PEA-LNP powders, obtained via freeze-drying in the presence of two quantities of mannose as a cryoprotectant. Results indicated that a higher amount of mannose improved the emitted dose (ED), and in particular, the fine particle fraction (FPF). A cytotoxicity assay was performed and indicated that PEA-LNPs are not toxic towards the MH-S alveolar macrophage cell line up to concentrations of 0.64 mg/mL, and using coumarin-6 labelled particles, a rapid internalization into the macrophage was confirmed. This study demonstrates that PEA could represent a suitable material for preparing inhalable lipid nanocarrier-based dry powders, which signify a promising tool for the transport of drugs employed to treat respiratory diseases and infections.


Subject(s)
Nanostructures , Respiratory Tract Diseases , Humans , Mannose , Drug Delivery Systems , Endocannabinoids
16.
Bioconjug Chem ; 35(3): 351-370, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38440876

ABSTRACT

A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.


Subject(s)
Mannose , Polyethylene Glycols , Azides , DNA/metabolism , Transfection
17.
Bioorg Chem ; 145: 107258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447463

ABSTRACT

FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.


Subject(s)
Escherichia coli , Urinary Tract Infections , Humans , Escherichia coli/metabolism , Fimbriae Proteins , Mannose/chemistry , Molecular Docking Simulation
18.
Front Immunol ; 15: 1273280, 2024.
Article in English | MEDLINE | ID: mdl-38533506

ABSTRACT

Inducing the degradation of pathological soluble antigens could be the key to greatly enhancing the efficacy of therapeutic monoclonal antibodies (mAbs), extensively used in the treatment of autoimmune and inflammatory disorders or cancer. Lysosomal targeting has gained increasing interest in recent years due to its pharmaceutical applications far beyond the treatment of lysosomal diseases, as a way to address proteins to the lysosome for eventual degradation. Mannose 6-phosphonate derivatives (M6Pn), called AMFA, are unique glycovectors that can significantly enhance the cellular internalization of the proteins conjugated to AMFA via the cation-independent mannose 6-phosphate receptor (M6PR) pathway. AMFA engineering of mAbs results in the generation of a bifunctional antibody that is designed to bind both the antigen and the M6PR. The improvement of the therapeutic potential by AMFA engineering was investigated using two antibodies directed against soluble antigens: infliximab (IFX), directed against tumor necrosis factor α (TNF-α), and bevacizumab (BVZ), directed against the vascular endothelial growth factor (VEGF). AMFA conjugations to the antibodies were performed either on the oligosaccharidic chains of the antibodies or on the lysine residues. Both conjugations were controlled and reproducible and provided a novel affinity for the M6PR without altering the affinity for the antigen. The grafting of AMFA to mAb increased their cellular uptake through an M6PR-dependent mechanism. The antigens were also 2.6 to 5.7 times more internalized by mAb-AMFA and rapidly degraded in the cells. Additional cell culture studies also proved the significantly higher efficacy of IFX-AMFA and BVZ-AMFA compared to their unconjugated counterparts in inhibiting TNF-α and VEGF activities. Finally, studies in a zebrafish embryo model of angiogenesis and in xenografted chick embryos showed that BVZ-AMFA was more effective than BVZ in reducing angiogenesis. These results demonstrate that AMFA grafting induces the degradation of soluble antigens and a significant increase in the therapeutic efficacy. Engineering with mannose 6-phosphate analogues has the potential to develop a new class of antibodies for autoimmune and inflammatory diseases.


Subject(s)
Mannose , Vascular Endothelial Growth Factor A , Chick Embryo , Animals , Tumor Necrosis Factor-alpha , Zebrafish , Antibodies, Monoclonal , Bevacizumab , Infliximab , Phosphates
19.
Nanomedicine ; 57: 102740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458368

ABSTRACT

Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase ß (IKKß) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKß siRNA-loaded liposome (siIKKß-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKß-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.


Subject(s)
Choroidal Neovascularization , I-kappa B Kinase , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , I-kappa B Kinase/genetics , I-kappa B Kinase/pharmacology , Liposomes/pharmacology , Mannose , Choroidal Neovascularization/genetics , Macrophages , Genetic Therapy
20.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437751

ABSTRACT

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Subject(s)
Brassica , Brassica/genetics , Cytochromes f/metabolism , Mannose/metabolism , Mannose/pharmacology , Nicotiana/genetics , Apoptosis , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...