Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.563
Filter
1.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
2.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mannose/pharmacology , Mannose/metabolism , TOR Serine-Threonine Kinases/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Mice , Male , Molecular Docking Simulation , Mice, Inbred C57BL , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects
3.
Analyst ; 149(10): 2942-2955, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38597575

ABSTRACT

Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.


Subject(s)
Lipid Metabolism , Mannose , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Mannose/metabolism , Mannose/chemistry , A549 Cells , Proteins/metabolism , Proteins/analysis , Bronchi/metabolism , Bronchi/cytology
4.
Food Microbiol ; 121: 104519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637081

ABSTRACT

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Subject(s)
Mannose , Salmonella typhimurium , Salmonella typhimurium/genetics , Mannose/metabolism , Spinacia oleracea , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Adhesins, Bacterial/genetics , Bacterial Adhesion/genetics
5.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437751

ABSTRACT

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Subject(s)
Brassica , Brassica/genetics , Cytochromes f/metabolism , Mannose/metabolism , Mannose/pharmacology , Nicotiana/genetics , Apoptosis , Chlorophyll/metabolism
6.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518553

ABSTRACT

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Subject(s)
Escherichia coli , Glucose , Mannose , Mannose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation , Glucose/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Mannosephosphates/metabolism , Metabolic Engineering , Fructosephosphates/metabolism , Mannose-6-Phosphate Isomerase/metabolism , Mannose-6-Phosphate Isomerase/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Glycolysis
7.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459021

ABSTRACT

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Subject(s)
Mannose-6-Phosphate Isomerase , Mannose , Animals , Mice , Mannose-6-Phosphate Isomerase/metabolism , Glycosylation , Mannose/metabolism , Glucose/metabolism , Antiviral Agents/pharmacology
8.
Sci Rep ; 14(1): 3627, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351089

ABSTRACT

The study aimed to assess the metabolomic profile of the synovial fluid (SF) of dogs affected by spontaneous osteoarthritis (OA) and compare any differences based on disease progression. Sixty client-owned dogs affected by spontaneous OA underwent clinical, radiographic, and cytologic evaluations to confirm the diagnosis. The affected joints were divided into four study groups based on the Kallgreen-Lawrence classification: OA1 (mild), OA2 (moderate), OA3 (severe), and OA4 (extremely severe/deforming). The osteoarthritic joint's SF was subjected to cytologic examination and 1H-NMR analysis. The metabolomic profiles of the study groups' SF samples were statistically compared using one-way ANOVA. Sixty osteoarthritic joints (45 stifles, 10 shoulders and 5 elbows) were included in the study. Fourteen, 28, and 18 joints were included in the OA1, OA2, and OA3 groups, respectively (0 joints in the OA4 group). Metabolomic analysis identified 48 metabolites, five of which were significantly different between study groups: Mannose and betaine were elevated in the OA1 group compared with the OA2 group, and the 2-hydroxyisobutyrate concentration decreased with OA progression; in contrast, isoleucine was less concentrated in mild vs. moderate OA, and lactate increased in severe OA. This study identified different 1H-NMR metabolomic profiles of canine SF in patients with progressive degrees of spontaneous OA, suggesting 1H-NMR metabolomic analysis as a potential alternative method for monitoring OA progression. In addition, the results suggest the therapeutic potentials of the metabolomic pathways that involve mannose, betaine, 2-hydroxyisobutyrate, isoleucine, and lactate.


Subject(s)
Hydroxybutyrates , Osteoarthritis , Synovial Fluid , Humans , Dogs , Animals , Synovial Fluid/metabolism , Betaine/metabolism , Mannose/metabolism , Isoleucine/metabolism , Proton Magnetic Resonance Spectroscopy , Osteoarthritis/diagnosis , Osteoarthritis/veterinary , Osteoarthritis/metabolism , Lactates/metabolism
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338648

ABSTRACT

The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.


Subject(s)
Mannose Receptor , Mannose , Mannose/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Lectins, C-Type/metabolism , Ligands
10.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332049

ABSTRACT

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Subject(s)
Homeostasis , PPAR gamma , Sirtuin 1 , Animals , PPAR gamma/metabolism , Mice , Sirtuin 1/metabolism , Sirtuin 1/genetics , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Mice, Inbred C57BL , Humans , Obesity/metabolism , Obesity/pathology , Transcription Factors/metabolism , Diet, High-Fat , Male , Adipose Tissue, Brown/metabolism , Thermogenesis , Mannose/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adipose Tissue, White/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism
11.
PLoS Comput Biol ; 20(1): e1011735, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190385

ABSTRACT

Bacteria like E. coli grow at vastly different rates on different substrates, however, the precise reason for this variability is poorly understood. Different growth rates have been attributed to 'nutrient quality', a key parameter in bacterial growth laws. However, it remains unclear to what extent nutrient quality is rooted in fundamental biochemical constraints like the energy content of nutrients, the protein cost required for their uptake and catabolism, or the capacity of the plasma membrane for nutrient transporters. Here, we show that while nutrient quality is indeed reflected in protein investment in substrate-specific transporters and enzymes, this is not a fundamental limitation on growth rate, at least for certain 'poor' substrates. We show that it is possible to turn mannose, one of the 'poorest' substrates of E. coli, into one of the 'best' substrates by reengineering chromosomal promoters of the mannose transporter and metabolic enzymes required for mannose degradation. This result falls in line with previous observations of more subtle growth rate improvement for many other carbon sources. However, we show that this faster growth rate comes at the cost of diverse cellular capabilities, reflected in longer lag phases, worse starvation survival and lower motility. We show that addition of cAMP to the medium can rescue these phenotypes but imposes a corresponding growth cost. Based on these data, we propose that nutrient quality is largely a self-determined, plastic property that can be modulated by the fraction of proteomic resources devoted to a specific substrate in the much larger proteome sector of catabolically activated genes. Rather than a fundamental biochemical limitation, nutrient quality reflects resource allocation decisions that are shaped by evolution in specific ecological niches and can be quickly adapted if necessary.


Subject(s)
Escherichia coli , Mannose , Escherichia coli/genetics , Mannose/metabolism , Proteomics , Bacteria , Ecosystem
12.
Appl Environ Microbiol ; 90(2): e0173623, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259076

ABSTRACT

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Subject(s)
Acanthamoeba castellanii , Amoeba , beta-Glucans , Amoeba/metabolism , Mannose/metabolism , Proteomics , beta-Glucans/metabolism , Glucans/metabolism , Histoplasma/metabolism
13.
Nanoscale ; 16(2): 821-832, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38093650

ABSTRACT

The use of Bombyx mori silk fibroin in composite materials has been extensively explored in many studies, owing to its remarkable mechanical properties. Recently, the N-glycan-engineered P25 protein was utilized to improve the mechanical properties of silk. However, the mechanism by which N-glycan-engineered P25 protein enhances the mechanical properties of silk remains unclear. This study analyzed the interaction between the P25 protein and silkworm silk using quantum mechanics/molecular mechanics multiscale simulations and discovered stronger hydrogen bonding between the amorphous domain and the P25 protein. The results confirmed that glycoengineering of the mannose molecule in N-glycan in orders of three, five, and seven increased the hydrogen bonding of the amorphous structures. However, P25 has fewer binding interactions with the crystalline domain. Silk amino acids and mannose molecules were analyzed using QM simulations, and hydroxyl and charged amino acids in the amorphous domains were found to have relatively higher reactivity with mannose molecules in N-glycans than basic and aliphatic amino acids in the crystalline domain. This study demonstrates how the N-glycan-engineered P25 protein can improve the mechanical properties of silk fibroin and identifies a key factor for N-glycan-engineered proteins.


Subject(s)
Bombyx , Fibroins , Animals , Silk , Fibroins/chemistry , Mannose/metabolism , Bombyx/chemistry , Bombyx/metabolism , Molecular Dynamics Simulation , Polysaccharides , Amino Acids
14.
J Sci Food Agric ; 104(5): 2876-2887, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38018265

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is the terminal manifestation of a type of pulmonary disease, which seriously affects the respiratory function of the body, and with no effective cure for treatment. This study evaluated the effect of sea cucumber peptides (SCP) on bleomycin-induced SD rat PF. RESULTS: SCP can inhibit the PF induced by bleomycin. PF and SCP did not affect the food intake of rats, but PF reduced the body weight of rats, and SCP could improve the weight loss. SCP reduced lung index in PF rats in a dose-dependent manner. SCP significantly reduced IL-1ß, IL-6, TNF-α, α-SMA and VIM expression levels in lung tissue (P < 0.05), significantly decreased TGF-ß1 expression level in serum (P < 0.01) and the LSCP group and MSCP group had better inhibitory effects on PF than the HSCP group. Histomorphological results showed that SCP could ameliorate the structural damage of lung tissue, alveolar wall rupture, inflammatory cell infiltration, fibroblast proliferation and deposition of intercellular matrix and collagen fibers caused by PF. The improvement effect of the MSCP group was the most noteworthy in histomorphology. Metabolomics results showed that SCP significantly downregulated catechol, N-acetyl-l-histidine, acetylcarnitine, stearoylcarnitine, d-mannose, l-threonine, l-alanine, glycine, 3-guanidinopropionic acid, prostaglandin D2 and embelic acid d-(-)-ß-hydroxybutyric acid expression levels in lung tissue. CONCLUSION: SCP ameliorate bleomycin-induced SD rat PF. KEGG pathway analysis proved that SCP intervened in PF mainly via the lysosome pathway, with d-mannose as the key factor. © 2023 Society of Chemical Industry.


Subject(s)
Pulmonary Fibrosis , Animals , Rats , Bleomycin/adverse effects , Bleomycin/metabolism , Lung , Mannose/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Threonine/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism
15.
Adv Sci (Weinh) ; 11(3): e2306715, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997289

ABSTRACT

Targeting the niche components surrounding glioblastoma stem cells (GSCs) helps to develop more effective glioblastoma treatments. However, the mechanisms underlying the crosstalk between GSCs and microenvironment remain largely unknown. Clarifying the extracellular molecules binding to GSCs marker CD133 helps to elucidate the mechanism of the communication between GSCs and the microenvironment. Here, it is found that the extracellular domain of high mannose type CD133 physically interacts with Collagen 1 (COL1) in GSCs. COL1, mainly secreted by cancer-associated fibroblasts, is a niche component for GSCs. COL1 enhances the interaction between CD133 and p85 and activates Akt phosphorylation. Activation of Akt pathway increases transcription factor ATF4 protein level, subsequently enhances SLC1A5-dependent glutamine uptake and glutathione synthesis. The inhibition of CD133-COL1 interaction or down-regulation of SLC1A5 reduces COL1-accelerated GSCs self-renewal and tumorigenesis. Analysis of glioma samples reveals that the level of COL1 is correlated with histopathological grade of glioma and the expression of SLC1A5. Collectively, COL1, a niche component for GSCs, enhances the tumorigenesis of GSCs partially through CD133-Akt-SLC1A5 signaling axis, providing a new mechanism underlying the cross-talk between GSCs and extracellular matrix (ECM) microenvironment.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/metabolism , Glutamine/metabolism , Mannose/metabolism , Mannose/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic , Glioma/metabolism , Collagen/metabolism , Tumor Microenvironment , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/pharmacology , Amino Acid Transport System ASC/metabolism
16.
Plant J ; 117(3): 805-817, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983622

ABSTRACT

Ascorbate plays an indispensable role in plants, functioning as both an antioxidant and a cellular redox buffer. It is widely acknowledged that the ascorbate biosynthesis in the photosynthetic tissues of land plants is governed by light-mediated regulation of the D-mannose/L-galactose (D-Man/L-Gal) pathway. At the core of this light-dependent regulation lies the VTC2 gene, encoding the rate-limiting enzyme GDP-L-Gal phosphorylase. The VTC2 expression is regulated by signals via the photosynthetic electron transport system. In this study, we directed our attention to the liverwort Marchantia polymorpha, representing one of the basal land plants, enabling us to conduct an in-depth analysis of its ascorbate biosynthesis. The M. polymorpha genome harbors a solitary gene for each enzyme involved in the D-Man/L-Gal pathway, including VTC2, along with three lactonase orthologs, which may be involved in the alternative ascorbate biosynthesis pathway. Through supplementation experiments with potential precursors, we observed that only L-Gal exhibited effectiveness in ascorbate biosynthesis. Furthermore, the generation of VTC2-deficient mutants through genome editing unveiled the inability of thallus regeneration in the absence of L-Gal supplementation, thereby revealing the importance of the D-Man/L-Gal pathway in ascorbate biosynthesis within M.  polymorpha. Interestingly, gene expression analyses unveiled a distinct characteristic of M. polymorpha, where none of the genes associated with the D-Man/L-Gal pathway, including VTC2, showed upregulation in response to light, unlike other known land plants. This study sheds light on the exceptional nature of M. polymorpha as a land plant that has evolved distinctive mechanisms concerning ascorbate biosynthesis and its regulation.


Subject(s)
Marchantia , Humans , Marchantia/genetics , Marchantia/metabolism , Galactose/metabolism , Mannose/metabolism , Antioxidants/metabolism , Oxidative Stress , Plants/metabolism , Gene Expression Regulation, Plant
17.
ACS Biomater Sci Eng ; 10(1): 166-177, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37978912

ABSTRACT

Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.


Subject(s)
Neoplasms , Stimuli Responsive Polymers , Humans , Stimuli Responsive Polymers/metabolism , RNA, Small Interfering/genetics , Mannose/metabolism , Macrophages/metabolism , Macrophages/pathology , Polymers/metabolism , Neoplasms/drug therapy
18.
Plant Sci ; 338: 111897, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37852415

ABSTRACT

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mannose-6-Phosphate Isomerase , Potassium Channels, Inwardly Rectifying , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mannose/metabolism , Plant Proteins/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Water/metabolism , Mannose-6-Phosphate Isomerase/metabolism
19.
Food Funct ; 15(2): 625-646, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38099724

ABSTRACT

Delayed mucosal healing and impaired intestinal epithelial barrier function have been implicated in the pathogenesis of ulcerative colitis (UC). Accordingly, restoration of epithelial barrier function as a means to reshape mucosal homeostasis represents an important strategy for use in the treatment of UC. In this study, we examined the role and mechanisms of D-mannose in the recovery of colitis as assessed in both animal and cell models. We found that D-mannose ameliorated inflammation, promoted mucosal healing in the colon and therefore was able to induce the recovery of UC. Furthermore, D-mannose increased the expression of tight junction (TJ) proteins and reduced the intestinal permeability during the recovery of colitis. Moreover, D-mannose inhibited M1 macrophage polarization and promoted M2 macrophage polarization via inducing AMPK phosphorylation while reducing mTOR phosphorylation in both models. In addition, increased TJ protein expression and decreased paracellular permeability were observed in NCM460 cells when incubated with the supernatants of D-mannose-treated RAW264.7 cells, suggesting that M1/M2 polarization induced by D-mannose modulates the expression of TJ proteins. Further study showed that D-mannose significantly upregulated the expression of TJ proteins in DSS-treated NCM460 cells by inducing AMPK phosphorylation, indicating a direct protective effect on epithelial cells. Finally, the protective effects of D-mannose were significantly abrogated by the presence of compound C, an AMPK inhibitor. Taken together, our data indicate that D-mannose can alleviate inflammation and foster epithelial restitution in UC recovery by inducing the TJ protein expression, which are achieved by inducing AMPK phosphorylation in the epithelium and/or macrophages.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Mannose/metabolism , Phosphorylation , Intestinal Mucosa/metabolism , Colitis/chemically induced , Colitis, Ulcerative/chemically induced , Inflammation/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
20.
Microb Pathog ; 187: 106515, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160987

ABSTRACT

In this study, a low molecular weight poly-d-mannose (LMWM) was separated from a mixed polysaccharide synthesized previously. Monosaccharide composition, Fourier-Transform infrared spectroscopy (FT-IR), periodate oxidation and smith degradation were determined. After safety evaluation, the inhibition of LMWM on the different biofilm formation stages of Salmonella enterica serovar Typhimurium (S. Typhimurium) was tested in vitro. Furthermore, the effect of LMWM on the adhesion of S. Typhimurium to Caco-2 cells and cell surface hydrophobicity (CSH) were observed. Results indicated that LMWM was a homopolysaccharide without cytotoxicity and hemolysis, containing both α-mannose and ß-mannose. It showed obvious anti-biofilm activity on S. Typhimurium and mainly activated on the initial adhesion and formation stage, even better than the commercial S. cerevisiae mannan (CM). LMWM inhibited the adhesion of S. Typhimurium on Caco-2 cells with the inhibition rate of 61.04 % at 2 mg/ml. Meanwhile, LMWM decreased the hydrophobicity of S. Typhimurium cell surface. In conclusion, the inhibitory effect on S. Typhimurium biofilm was not caused by bacteriostatic or bactericidal activity of LMWM. The specific anti-adhesion and the decrease of bacterial CSH by LMWM may closely relate to anti-biofilm mechanism. This study provides some supports for the application of LMWM as antibiotics alternative on S. Typhimurium in the future.


Subject(s)
Mannose , Salmonella typhimurium , Humans , Mannose/metabolism , Mannose/pharmacology , Caco-2 Cells , Molecular Weight , Saccharomyces cerevisiae , Spectroscopy, Fourier Transform Infrared , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...