Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32088748

ABSTRACT

Praying mantids are the only insects proven to have stereoscopic vision (stereopsis): the ability to perceive depth from the slightly shifted images seen by the two eyes. Recently, the first neurons likely to be involved in mantis stereopsis were described and a speculative neuronal circuit suggested. Here we further investigate classes of neurons in the lobula complex of the praying mantis brain and their tuning to stereoscopically-defined depth. We used sharp electrode recordings with tracer injections to identify visual projection neurons with input in the optic lobe and output in the central brain. In order to measure binocular response fields of the cells the animals watched a vertical bar stimulus in a 3D insect cinema during recordings. We describe the binocular tuning of 19 neurons projecting from the lobula complex and the medulla to central brain areas. The majority of neurons (12/19) were binocular and had receptive fields for both eyes that overlapped in the frontal region. Thus, these neurons could be involved in mantis stereopsis. We also find that neurons preferring different contrast polarity (bright vs dark) tend to be segregated in the mantis lobula complex, reminiscent of the segregation for small targets and widefield motion in mantids and other insects.


Subject(s)
Brain/physiology , Depth Perception , Mantodea/physiology , Neurons/physiology , Optic Lobe, Nonmammalian/physiology , Vision, Binocular , Visual Fields , Animals , Brain/cytology , Evoked Potentials, Visual , Mantodea/cytology , Optic Lobe, Nonmammalian/cytology , Photic Stimulation , Visual Pathways/physiology
2.
Article in English | MEDLINE | ID: mdl-19888580

ABSTRACT

Extracellular recordings were made from a directionally selective neuron in the ventral nerve cord of mantises. The neuron's preferred direction of motion was forward and upward over the compound eye contralateral to its axon at the cervical connective. The neuron was sensitive to wide-field motion stimuli, resistant to habituation, and showed transient excitation in response to light ON and OFF stimuli. Its responses to drifting gratings depended on the temporal frequency and contrast of the stimulus. These results suggest that the neuron receives input from correlation-type motion detectors.


Subject(s)
Central Nervous System/physiology , Ganglia, Invertebrate/physiology , Mantodea/physiology , Motion Perception/physiology , Sensory Receptor Cells/physiology , Action Potentials/physiology , Animals , Axons/physiology , Axons/ultrastructure , Central Nervous System/cytology , Contrast Sensitivity/physiology , Efferent Pathways/physiology , Electrophysiology , Female , Functional Laterality/physiology , Ganglia, Invertebrate/cytology , Habituation, Psychophysiologic/physiology , Male , Mantodea/cytology , Photic Stimulation , Photoreceptor Cells, Invertebrate/physiology , Psychomotor Performance/physiology , Sensory Deprivation/physiology , Sensory Receptor Cells/cytology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...