Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.131
Filter
1.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862484

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Subject(s)
Cosmic Radiation , Space Flight , Animals , Humans , Mice , Cosmic Radiation/adverse effects , Rats , Male , Kidney/pathology , Kidney/radiation effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Weightlessness/adverse effects , Astronauts , Mice, Inbred C57BL , Proteomics , Female , Mars , Weightlessness Simulation/adverse effects
2.
Sci Total Environ ; 935: 173299, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38761954

ABSTRACT

As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.


Subject(s)
Soil , Triticum , Triticum/growth & development , Soil/chemistry , Mars , Soil Microbiology , Microbiota/drug effects , Composting/methods
3.
Sci Total Environ ; 935: 173442, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38788948

ABSTRACT

Covered by vast eolian landforms, gravel deposits, and playas, the worldwide typical evaporite deposit land, Qaidam Basin, in northwestern China is analogous to early Mars when the aridification process had lasted for millions of years since the end of a wetter climate. This study aims to investigate the chemical and isotopic characteristics of waters in an evaporite-rich environment, as well as the habitable conditions therein, that have undergone a transformation similar to early Mars. In May 2023, a total of 26 water samples were collected across the representative central axis of a longitudinal aridity gradient in the Qaidam Basin, including categories of meteoric water, freshwater, standing water accumulated after precipitation, salty lacustrine water, and hypersaline brines to inspect compounds made up of carbon, nitrogen, phosphorus, sulfur, halogen, and metallic elements. As evaporation intensified, the salt types transformed from HCO3-Ca·Na to Cl·SO4-Na or ClMg. The dominance of carbonate will gradually be replaced by sulfate and chloride, leaving much more dilute and less detectable contents. The presence of trace ClO4-, ClO3-, ClO2-, and BrO3- was confirmed in a few of the sampled Qaidam waters, indicating the preservation of oxyhalides in waters within an arid region and possibly the presence of relevant microbial enzymes. The isotopes of water, carbonaceous, and nitrogenous compounds provide valuable references for either abiogenic or biogenic signatures. With undetectable amount, phosphorus was found to be the limiting nutrient in evaporative aquatic environments but not necessarily antibiosignatures. Overall, these results suggest that the paleo-lacustrine environments on Mars are more likely to preserve biosignatures if they feature the dominance of carbonate minerals, bioavailable nitrate, phosphorus, and organic carbon, the presence of thermodynamically unstable oxyhalides, and isotope ratios that point to the involvement of biological activity.


Subject(s)
Mars , Tibet , Environmental Monitoring , Extraterrestrial Environment
4.
Sci Rep ; 14(1): 12249, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806503

ABSTRACT

Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.


Subject(s)
Ascomycota , Mars , Phylogeny , Spacecraft , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Genome, Fungal/genetics , Genomics/methods
5.
Astrobiology ; 24(5): 498-517, 2024 May.
Article in English | MEDLINE | ID: mdl-38768431

ABSTRACT

Assessing the past habitability of Mars and searching for evidence of ancient life at Jezero crater via the Perseverance rover are the key objectives of NASA's Mars 2020 mission. Onboard the rover, PIXL (Planetary Instrument for X-ray Lithochemistry) is one of the best suited instruments to search for microbial biosignatures due to its ability to characterize chemical composition of fine scale textures in geological targets using a nondestructive technique. PIXL is also the first micro-X-ray fluorescence (XRF) spectrometer onboard a Mars rover. Here, we present guidelines for identifying and investigating a microbial biosignature in an aeolian environment using PIXL-analogous micro-XRF (µXRF) analyses. We collected samples from a modern wet aeolian environment at Padre Island, Texas, that contain buried microbial mats, and we analyzed them using µXRF techniques analogous to how PIXL is being operated on Mars. We show via µXRF technique and microscope images the geochemical and textural variations from the surface to ∼40 cm depth. Microbial mats are associated with heavy-mineral lags and show specific textural and geochemical characteristics that make them a distinct biosignature for this environment. Upon burial, they acquire a diffuse texture due to the expansion and contraction of gas-filled voids, and they present a geochemical signature rich in iron and titanium, which is due to the trapping of heavy minerals. We show that these intrinsic characteristics can be detected via µXRF analyses, and that they are distinct from buried abiotic facies such as cross-stratification and adhesion ripple laminations. We also designed and conducted an interactive survey using the Padre Island µXRF data to explore how different users chose to investigate a biosignature-bearing dataset via PIXL-like sampling strategies. We show that investigating biosignatures via PIXL-like analyses is heavily influenced by technical constraints (e.g., the XRF measurement characteristics) and by the variety of approaches chosen by different scientists. Lessons learned for accurately identifying and characterizing this biosignature in the context of rover-mission constraints include defining relative priorities among measurements, favoring a multidisciplinary approach to the decision-making process of XRF measurements selection, and considering abiotic results to support or discard a biosignature interpretation. Our results provide guidelines for PIXL analyses of potential biosignature on Mars.


Subject(s)
Exobiology , Extraterrestrial Environment , Mars , Spectrometry, X-Ray Emission , Exobiology/methods , Exobiology/instrumentation , Extraterrestrial Environment/chemistry , Spectrometry, X-Ray Emission/methods , Spectrometry, X-Ray Emission/instrumentation
7.
Sci Justice ; 64(3): 251-257, 2024 May.
Article in English | MEDLINE | ID: mdl-38735659

ABSTRACT

A new method for looking for life outside the Earth is used as an example to demonstrate how ways of presenting complex scientific concepts to the general public, used in planetary science, could be used in forensic science. The work led to a pared down, practical definition of detectable Life for planetary exploration, An organised system capable of processing energy sources to its advantage. For nearly three quarters of Earth's history the only lifeforms were microbes, which are the target for looking for extraterrestrial life. Microbes are microscopic and may be sparsely distributed, but their metabolic products can form large, durable rocks, much easier to find and which may contain the organisms or their remains. There are similar challenges in presenting astrobiological and forensic science. Both may have to deal with very large or very small numbers which are not immediately comprehensible but can be understood by analogy. To increase the impact on the listener or reader, dramatic analogues are valuable, for example, referring to the mineralised microbial metabolic products as, "fossilised breath of bacteria" demands the audience's attention and engages them before more detailed explanations are given. The power of practical experiments or demonstrations is most important to reinforce what might otherwise be a fairly abstract concept. Surprisingly, most of these approaches can be made to work equally well in both spoken and written forms as well as in both sciences.


Subject(s)
Exobiology , Forensic Sciences , Mars , Forensic Sciences/methods , Humans , Bacteria/isolation & purification , Extraterrestrial Environment
8.
Nat Commun ; 15(1): 3863, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769315

ABSTRACT

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Subject(s)
Evolution, Molecular , Extraterrestrial Environment , Mars , Perchlorates , RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Perchlorates/metabolism
9.
Sci Rep ; 14(1): 11537, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773211

ABSTRACT

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.


Subject(s)
Chlorates , Extraterrestrial Environment , Mars , Perchlorates , Perchlorates/metabolism , Chlorates/metabolism , Aspergillus niger/metabolism , Saccharomycetales/metabolism , Water/chemistry , Microbial Viability
10.
PLoS One ; 19(5): e0302149, 2024.
Article in English | MEDLINE | ID: mdl-38691526

ABSTRACT

Future colonists on Mars will need to produce fresh food locally to acquire key nutrients lost in food dehydration, the primary technique for sending food to space. In this study we aimed to test the viability and prospect of applying an intercropping system as a method for soil-based food production in Martian colonies. This novel approach to Martian agriculture adds valuable insight into how we can optimise resource use and enhance colony self-sustainability, since Martian colonies will operate under very limited space, energy, and Earth supplies. A likely early Martian agricultural setting was simulated using small pots, a controlled greenhouse environment, and species compliant with space mission requirements. Pea (Pisum sativum), carrot (Daucus carota) and tomato (Solanum lycopersicum) were grown in three soil types ("MMS-1" Mars regolith simulant, potting soil and sand), planted either mixed (intercropping) or separate (monocropping). Rhizobia bacteria (Rhizobium leguminosarum) were added as the pea symbiont for Nitrogen-fixing. Plant performance was measured as above-ground biomass (g), yield (g), harvest index (%), and Nitrogen/Phosphorus/Potassium content in yield (g/kg). The overall intercropping system performance was calculated as total relative yield (RYT). Intercropping had clear effects on plant performance in Mars regolith, being beneficial for tomato but mostly detrimental for pea and carrot, ultimately giving an overall yield disadvantage compared to monocropping (RYT = 0.93). This effect likely resulted from the observed absence of Rhizobia nodulation in Mars regolith, negating Nitrogen-fixation and preventing intercropped plants from leveraging their complementarity. Adverse regolith conditions-high pH, elevated compactness and nutrient deficiencies-presumably restricted Rhizobia survival/nodulation. In sand, where more favourable soil conditions promoted effective nodulation, intercropping significantly outperformed monocropping (RYT = 1.32). Given this, we suggest that with simple regolith improvements, enhancing conditions for nodulation, intercropping shows promise as a method for optimising food production in Martian colonies. Specific regolith ameliorations are proposed for future research.


Subject(s)
Mars , Soil , Solanum lycopersicum , Solanum lycopersicum/growth & development , Soil/chemistry , Daucus carota/growth & development , Agriculture/methods , Pisum sativum/growth & development , Biomass , Nitrogen Fixation , Nitrogen/metabolism , Space Flight
11.
Life Sci Space Res (Amst) ; 41: 181-190, 2024 May.
Article in English | MEDLINE | ID: mdl-38670646

ABSTRACT

The Martian environment, characterized by extreme aridity, frigid temperatures, and a lack of atmospheric oxygen, presents a formidable challenge for potential terraforming endeavors. This review article synthesizes current research on utilizing algae as biocatalysts in the proposed terraforming of Mars, assessing their capacity to facilitate Martian atmospheric conditions through photosynthetic bioengineering. We analyze the physiological and genetic traits of extremophile algae that equip them for survival in extreme habitats on Earth, which serve as analogs for Martian surface conditions. The potential for these organisms to mediate atmospheric change on Mars is evaluated, specifically their role in biogenic oxygen production and carbon dioxide sequestration. We discuss strategies for enhancing algal strains' resilience and metabolic efficiency, including genetic modification and the development of bioreactors for controlled growth in extraterrestrial environments. The integration of algal systems with existing mechanical and chemical terraforming proposals is also examined, proposing a synergistic approach for establishing a nascent Martian biosphere. Ethical and ecological considerations concerning introducing terrestrial life to extra-planetary bodies are critically appraised. This appraisal includes an examination of potential ecological feedback loops and inherent risks associated with biological terraforming. Biological terraforming is the theoretical process of deliberately altering a planet's atmosphere, temperature, and ecosystem to render it suitable for Earth-like life. The feasibility of a phased introduction of life, starting with microbial taxa and progressing to multicellular organisms, fosters a supportive atmosphere on Mars. By extending the frontier of biotechnological innovation into space, this work contributes to the foundational understanding necessary for one of humanity's most audacious goals-the terraforming of another planet.


Subject(s)
Atmosphere , Exobiology , Extraterrestrial Environment , Mars , Photosynthesis , Ecosystem
12.
Life Sci Space Res (Amst) ; 41: 158-165, 2024 May.
Article in English | MEDLINE | ID: mdl-38670642

ABSTRACT

This paper reports the sixth in a series of meetings held under the auspices of COSPAR (with space agencies support) to identify, refine and prioritize the knowledge gaps that need to be addressed for planetary protection for crewed missions to Mars, as well as to describe where and how needed data can be obtained. This approach is consistent with current scientific understanding and COSPAR policy, that the presence of a biological hazard in Martian material cannot be ruled out, and appropriate mitigations need to be in place. The workshops in the series were intentionally organized to obtain a diverse set of inputs from subject matter experts across a range of expertise on conduct of a potential future crewed Mars exploration mission, identifying and leveraging precursor ground, cis-lunar crewed and Mars robotic activities that can be used to close knowledge gaps. The knowledge gaps addressed by this meeting series fall into three major themes: 1. Microbial and human health monitoring; 2. Technology and operations for biological contamination control, and; 3. Natural transport of biological contamination on Mars. This report describes the findings of the 2022 meeting, which focused on measures needed to protect the crew and the returning Mars samples during the mission, both on the Martian surface and during the return to Earth. Much of this approach to crewed exploration is well aligned with the Principles and Guidelines for Human Missions to Mars described in section 9.3 of the current (2021) COSPAR policy, in terms of goals and intent. There were three specific recommendations.


Subject(s)
Mars , Space Flight , Humans , Astronauts , Extraterrestrial Environment , Exobiology/methods
13.
Life Sci Space Res (Amst) ; 41: 29-42, 2024 May.
Article in English | MEDLINE | ID: mdl-38670650

ABSTRACT

During a human mission to Mars, astronauts would be continuously exposed to galactic cosmic rays (GCR) consisting of high energy protons and heavier ions coming from outside our solar system. Due to their high energy, GCR ions can penetrate spacecraft and space habitat structures, directly reaching human organs. Additionally, they generate secondary particles when interacting with shielding materials and human tissues. Baryon secondaries have been the focus of many previous studies, while meson and lepton secondaries have been considered to a much lesser extent. In this work, we focus on assessing the tissue-specific dose equivalents and the effective dose for males of secondary mesons and leptons for the interplanetary cruise phase and the surface phase on Mars. We also provide the energy distribution of the secondary pions in each human organ since they are dominant compared to other mesons and leptons. For this calculation, the PHITS3.27 Monte Carlo simulation toolkit is used to compute the energy spectra of particles in organs in a realistic human phantom. Based on the simulation data, the dose equivalent has been estimated with radiation quality factors in ICRP Publication 60 and in the latest NASA Space Cancer Risk model (NSCR-2022). The effective dose is then assessed with the tissue weighting factors in ICRP Publication 103 and in the NSCR model, separately. The results indicate that the contribution of secondary mesons and leptons to the total effective dose is 6.1 %, 9.1 %, and 11.3 % with the NSCR model in interplanetary space behind 5, 20, and 50 g/cm2 aluminum shielding, respectively, with similar values using the ICRP model. The outcomes of this work lead to an improved understanding of the potential health risks induced by secondary particles for exploration missions to Mars and other destinations.


Subject(s)
Cosmic Radiation , Mars , Radiation Dosage , Space Flight , Cosmic Radiation/adverse effects , Humans , Astronauts , Monte Carlo Method , Male
14.
Astrobiology ; 24(5): 538-558, 2024 May.
Article in English | MEDLINE | ID: mdl-38648554

ABSTRACT

NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.


Subject(s)
Exobiology , Extraterrestrial Environment , Mars , Extraterrestrial Environment/chemistry , Exobiology/methods , Groundwater/microbiology , Groundwater/chemistry
15.
Astrobiology ; 24(5): 518-537, 2024 May.
Article in English | MEDLINE | ID: mdl-38669050

ABSTRACT

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.


Subject(s)
Aluminum Silicates , Exobiology , Mars , Phenylalanine , Ultraviolet Rays , Phenylalanine/chemistry , Exobiology/methods , Aluminum Silicates/chemistry , Extraterrestrial Environment/chemistry , Photolysis , Fatty Acids/chemistry , Fatty Acids/analysis
16.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38507695

ABSTRACT

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Subject(s)
Mars , Space Flight , Humans , Extraterrestrial Environment , Exobiology , Containment of Biohazards , Spacecraft
17.
Hum Mov Sci ; 95: 103199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518737

ABSTRACT

The ability to coordinate actions between the limbs is important for many operationally relevant tasks associated with space exploration. A future milestone in space exploration is sending humans to Mars. Therefore, an experiment was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with the bimanual control of force in simulated Martian gravity. A head-up tilt (HUT)/head-down tilt (HDT) paradigm was used to simulate gravity on Mars (22.3° HUT). Right limb dominant participants (N = 11) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multifrequency patterns by exerting force with their right and left limbs. Lissajous displays were provided to guide task performance. Participants performed 14 twenty-second practice trials at 90° HUT (Earth). Following a 30-min rest period, participants performed 2 test trials for each coordination pattern in both Earth and Mars conditions. Performance during the test trials were compared. Results indicated very effective temporal performance of the goal coordination tasks in both gravity conditions. However, results indicated differences associated with the production of force between Earth and Mars. In general, participants produced less force in simulated Martian gravity than in the Earth condition. In addition, force production was more harmonic in Martian gravity than Earth gravity for both limbs, indicating that less force distortions (adjustments, hesitations, and/or perturbations) occurred in the Mars condition than in the Earth condition. The force coherence analysis indicated significantly higher coherence in the 1:1 task than in the 1:2 task for all force frequency bands, with the highest level of coherence in the 1-4 Hz frequency band for both gravity conditions. High coherence in the 1-4 Hz frequency band is associated with a common neural drive that activates the two arms simultaneously and is consistent with the requirements of the two tasks. The results also support the notion that neural crosstalk stabilizes the performance of the 1:1 in-phase task. In addition, significantly higher coherence in the 8-12 Hz frequency bands were observed for the Earth condition than the Mars condition. Force coherence in the 8-12 Hz bands is associated with the processing of sensorimotor information, suggesting that participants were better at integrating visual, proprioceptive, and/or tactile feedback in Earth than for the Mars condition. Overall, the results indicate less neural interference in Martian gravity; however, participants appear to be more effective at using the Lissajous displays to guide performance under Earth's gravity.


Subject(s)
Mars , Psychomotor Performance , Humans , Male , Adult , Psychomotor Performance/physiology , Young Adult , Gravitation , Female , Space Flight , Head-Down Tilt/physiology , Biomechanical Phenomena , Space Simulation , Martial Arts/physiology
18.
Astrobiology ; 24(S1): S202-S215, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498825

ABSTRACT

Planetary protection is a principle in the design of interplanetary missions that aims to prevent biological cross contamination between the target body and Earth. Planetary protection policies and procedures have worked to mitigate forward contamination (from Earth) and back contamination (to Earth) since the beginning of the space age. Today, planetary protection policy is guided by international agreements, nongovernmental advisory councils, and national space agencies. The landscape of planetary protection science and policy is changing rapidly, as new technologies, crewed missions to Mars and the Moon, and even orbital settlements are being developed. Space exploration, whether specifically targeted toward questions in astrobiology or not, must consider planetary protection concerns to minimize contamination that poses a risk to both astrobiological investigations as well as Earth's biosphere. In this chapter, we provide an introduction to and overview of the history, motivations, and implementation of planetary protection in the United States.


Subject(s)
Mars , Space Flight , Containment of Biohazards , Exobiology , Extraterrestrial Environment , Planets , United States
19.
Bioinspir Biomim ; 19(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38452382

ABSTRACT

The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s-1turning speed 1.94° s-1and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.


Subject(s)
Mars , Robotics , Extraterrestrial Environment , Biomimetics , Soil
20.
Anal Chem ; 96(12): 4764-4773, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38484023

ABSTRACT

Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.


Subject(s)
Exobiology , Mars , Exobiology/methods , Minerals , Amino Acid Sequence , Peptides , Antibodies , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...