Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Virus Genes ; 60(3): 309-313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491264

ABSTRACT

Adenoviruses (AdVs) have been detected in a wide variety of animals. To date, eight types of AdVs in sheep and two types in goats have been identified, which belong to two distinct genera, Mastadenovirus and Atadenovirus. Typically, the term pneumo-enteritis is used to describe adenovirus-induced disease in small ruminants, which has been associated with both enteric and respiratory symptoms of varying severity. The aim of this study was to detect and identify AdVs of small ruminants belonging to the genera Mastadenovirus and Atadenovirus. For this purpose, diagnostic samples (47 lung, 27 intestine, and two pooled tissue samples including intestine and lung) from 49 small ruminants (39 sheep and 10 goats) were used. Following the viral DNA extraction, PCR was carried out by using the primers targeting the hexon gene in order to detect both mast- and atadenoviruses. Sequencing the amplified fragments revealed the presence of three types of ovine adenovirus (OAdV): OAdV-3, OAdV-4, and OAdV-8. Specifically, OAdV-3 was detected in two sheep and a goat while OAdV-4 and OAdV-8 were found in only one sheep each. There is still limited data on the interaction between the viruses in different adenovirus genera and the detected disease, as well as the genetic diversity of adenoviruses, especially in small ruminants. In conclusion, the detection of AdVs in lung and intestinal tissues of small ruminants in this study suggests that these viruses may have contributed to the disease and/or predisposed to other agents.


Subject(s)
Adenoviridae Infections , Goat Diseases , Goats , Mastadenovirus , Phylogeny , Sheep Diseases , Animals , Goats/virology , Sheep/virology , Sheep Diseases/virology , Goat Diseases/virology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Mastadenovirus/classification , Turkey , DNA, Viral/genetics , Sequence Analysis, DNA , Atadenovirus/genetics , Atadenovirus/isolation & purification , Atadenovirus/classification , Lung/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adenoviridae/classification , Adenoviridae/pathogenicity
2.
Viruses ; 13(11)2021 10 30.
Article in English | MEDLINE | ID: mdl-34835000

ABSTRACT

Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.


Subject(s)
Adenoviridae/classification , Adenoviridae/genetics , Adenoviridae/isolation & purification , Herpestidae/virology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Amino Acid Sequence , Animals , Atadenovirus/classification , Atadenovirus/genetics , Atadenovirus/isolation & purification , DNA-Directed DNA Polymerase , Feces/virology , Lizards/virology , Mastadenovirus/classification , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Phylogeny , Polymerase Chain Reaction , Turtles/virology , West Indies
3.
J Med Virol ; 93(7): 4392-4398, 2021 07.
Article in English | MEDLINE | ID: mdl-33829531

ABSTRACT

With the arrival of coronavirus disease 2019 (COVID-19) in Brazil in February 2020, several preventive measures were taken by the population aiming to avoid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection including the use of masks, social distancing, and frequent hand washing then, these measures may have contributed to preventing infection also by other respiratory viruses. Our goal was to determine the frequencies of Influenza A and B viruses (FLUAV/FLUBV), human mastadenovirus C (HAdV-C), Enterovirus 68 (EV-68), and rhinovirus (RV) besides SARS-CoV-2 among hospitalized patients suspect of COVID-19 with cases of acute respiratory disease syndrome (ARDS) in the period of March to December 2020 and to detect possible coinfections among them. Nucleic acid detection was performed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in respiratory samples using naso-oropharyngeal swabs and bronchoalveolar lavage. A total of 418 samples of the 987 analyzed (42.3%) were positive for SARS-CoV-2, 16 (1.62%) samples were positive for FLUAV, no sample was positive for FLUBV or EV-68, 67 (6.78%) samples were positive for HAdV-C, 55 samples were positive for RV 1/2 (26.3%) and 37 for RV 2/2 (13.6%). Coinfections were also detected, including a triple coinfection with SARS-CoV-2, FLUAV, and HAdV-C. In the present work, a very low frequency of FLUV was reported among hospitalized patients with ARDS compared to the past years, probably due to preventive measures taken to avoid COVID-19 and the high influenza vaccination coverage in the region in which this study was performed.


Subject(s)
Adenoviridae Infections/epidemiology , COVID-19/epidemiology , Common Cold/epidemiology , Enterovirus Infections/epidemiology , Influenza, Human/epidemiology , Physical Distancing , Adenoviridae Infections/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Common Cold/prevention & control , Enterovirus D, Human/genetics , Enterovirus D, Human/isolation & purification , Enterovirus Infections/prevention & control , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/prevention & control , Male , Masks , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Middle Aged , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult
4.
Sci Rep ; 11(1): 6331, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737691

ABSTRACT

Few publications, often limited to one specific pathogen, have studied bonobos (Pan paniscus), our closest living relatives, as possible reservoirs of certain human infectious agents. Here, 91 stool samples from semicaptive bonobos and bonobos reintroduced in the wild, in the Democratic Republic of the Congo, were screened for different infectious agents: viruses, bacteria and parasites. We showed the presence of potentially zoonotic viral, bacterial or parasitic agents in stool samples, sometimes coinfecting the same individuals. A high prevalence of Human mastadenoviruses (HAdV-C, HAdV-B, HAdV-E) was observed. Encephalomyocarditis viruses were identified in semicaptive bonobos, although identified genotypes were different from those identified in the previous fatal myocarditis epidemic at the same site in 2009. Non-pallidum Treponema spp. including symbiotic T. succinifaciens, T. berlinense and several potential new species with unknown pathogenicity were identified. We detected DNA of non-tuberculosis Mycobacterium spp., Acinetobacter spp., Salmonella spp. as well as pathogenic Leptospira interrogans. Zoonotic parasites such as Taenia solium and Strongyloides stercoralis were predominantly present in wild bonobos, while Giardia lamblia was found only in bonobos in contact with humans, suggesting a possible exchange. One third of bonobos carried Oesophagostomum spp., particularly zoonotic O. stephanostomum and O. bifurcum-like species, as well as other uncharacterized Nematoda. Trypanosoma theileri has been identified in semicaptive bonobos. Pathogens typically known to be transmitted sexually were not identified. We present here the results of a reasonably-sized screening study detecting DNA/RNA sequence evidence of potentially pathogenic viruses and microorganisms in bonobo based on a noninvasive sampling method (feces) and focused PCR diagnostics.


Subject(s)
Endangered Species , Host-Pathogen Interactions/genetics , Mastadenovirus/isolation & purification , Pan paniscus/virology , Animals , Democratic Republic of the Congo/epidemiology , Encephalomyocarditis virus/isolation & purification , Encephalomyocarditis virus/pathogenicity , Feces/microbiology , Feces/parasitology , Feces/virology , Humans , Mastadenovirus/pathogenicity , Pan paniscus/microbiology , Pan paniscus/parasitology , Pan troglodytes/microbiology , Pan troglodytes/parasitology , Pan troglodytes/virology , Parasites/isolation & purification , Parasites/pathogenicity
5.
Res Vet Sci ; 135: 450-455, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33203584

ABSTRACT

BRD is associated with infectious agents, but management and transport-stress are trigger factors. Metaphylactic administration of antimicrobial reduces colonization of respiratory tract by pathogens, but the development of antibiotic-resistance raises public health concerns leading to propose new control strategies. The study analyzed nasopharyngeal swabs of 231 imported cattle, 10% of 49 trucks, transported from France to southern Italy and, through Real-time PCR identified the prevalence of the involved pathogens speculating on strategies to reduce the impact of BRD. The samples were tested by Real-time PCR, for the detection of bovine coronavirus (BCoV), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus (BPiV), bovine adenovirus (BAdV), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Yates-corrected chi squared, or Fisher's exact test were used to compare both animal-health status and positivity/negativity to pathogens, and the relationship between presence/absence of clinical signs and Real-time PCR-positivity. H. somni and BCoV were the most frequently identified pathogens. In BRD-diagnosed cattle, BAdV was detected in 13.8% (19/138), BRSV in 14.5% (20/138) and BPiV in 4.3% (6/138). Healthy cattle were mostly positive for H. somni (89.2%, 83/93). A statistically significant association was observed between clinical signs and positivity to M. haemolytica (p value = 0.016). Although mass-medication and vaccination are used for BRD control, it still remains a primary health problem. Our results highlight that the nasopharyngeal microbiota could be affected by transport and that strategies to enhance calf immunity for reducing BRD-risk development would be more effective if applied at farm of origin prior to loading.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus, Bovine/isolation & purification , Microbiota , Pasteurellaceae/isolation & purification , Respiratory Tract Diseases/veterinary , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Coronavirus, Bovine/genetics , Epidemiologic Studies , France/epidemiology , Immunity , Italy/epidemiology , Male , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Nasopharynx/microbiology , Pasteurellaceae/genetics , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory System/microbiology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/prevention & control , Respirovirus/genetics , Respirovirus/isolation & purification , Transportation
6.
Viruses ; 12(6)2020 06 18.
Article in English | MEDLINE | ID: mdl-32570742

ABSTRACT

Non-human primates (NHPs) are known hosts for adenoviruses (AdVs), so there is the possibility of the zoonotic or cross-species transmission of AdVs. As with humans, AdV infections in animals can cause diseases that range from asymptomatic to fatal. The aim of this study was to investigate the occurrence and diversity of AdVs in: (i) fecal samples of apes and monkeys from different African countries (Republic of Congo, Senegal, Djibouti and Algeria), (ii) stool of humans living near gorillas in the Republic of Congo, in order to explore the potential zoonotic risks. Samples were screened by real-time and standard PCRs, followed by the sequencing of the partial DNA polymerase gene in order to identify the AdV species. The prevalence was 3.3 folds higher in NHPs than in humans. More than 1/3 (35.8%) of the NHPs and 1/10 (10.5%) of the humans excreted AdVs in their feces. The positive rate was high in great apes (46%), with a maximum of 54.2% in chimpanzees (Pan troglodytes) and 35.9% in gorillas (Gorilla gorilla), followed by monkeys (25.6%), with 27.5% in Barbary macaques (Macaca sylvanus) and 23.1% in baboons (seven Papio papio and six Papio hamadryas). No green monkeys (Chlorocebus sabaeus) were found to be positive for AdVs. The AdVs detected in NHPs were members of Human mastadenovirus E (HAdV-E), HAdV-C or HAdV-B, and those in the humans belonged to HAdV-C or HAdV-D. HAdV-C members were detected in both gorillas and humans, with evidence of zoonotic transmission since phylogenetic analysis revealed that gorilla AdVs belonging to HAdV-C were genetically identical to strains detected in humans who had been living around gorillas, and, inversely, a HAdV-C member HAdV type was detected in gorillas. This confirms the gorilla-to-human transmission of adenovirus. which has been reported previously. In addition, HAdV-E members, the most often detected here, are widely distributed among NHP species regardless of their origin, i.e., HAdV-E members seem to lack host specificity. Virus isolation was successful from a human sample and the strain of the Mbo024 genome, of 35 kb, that was identified as belonging to HAdV-D, exhibited close identity to HAdV-D members for all genes. This study provides information on the AdVs that infect African NHPs and the human populations living nearby, with an evident zoonotic transmission. It is likely that AdVs crossed the species barrier between different NHP species (especially HAdV-E members), between NHPs and humans (especially HAdV-C), but also between humans, NHPs and other animal species.


Subject(s)
Adenoviridae Infections/epidemiology , Adenoviridae Infections/veterinary , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Adenoviridae Infections/transmission , Algeria/epidemiology , Animals , Chlorocebus aethiops/virology , Congo/epidemiology , DNA, Viral/genetics , DNA-Directed DNA Polymerase/genetics , Djibouti/epidemiology , Feces/virology , Gorilla gorilla/virology , Humans , Macaca/virology , Mastadenovirus/genetics , Pan troglodytes/virology , Papio hamadryas/virology , Papio papio/virology , Senegal/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission
7.
Infect Genet Evol ; 83: 104348, 2020 09.
Article in English | MEDLINE | ID: mdl-32380313

ABSTRACT

Bovine adenovirus type 3 (BAdV-3) is an important pathogen causing bovine respiratory disease complex (BRDC). From Jun 2016 to Jun 2018, 108 nose swab samples were collected from cattle with BRDC from 11 farms in five cities, and 78.7% (85/108) samples were detected as BAdV-3 positive by Real-time PCR. Interestingly, the sequences of 7/10 fiber (852 bp) and hexon (785 bp) fragments cloned from 10 positive samples from eight farms were clustered into a single branch of the evolutionary tree. A BAdV-3 strain (BO/YB24/17/CH) was successfully isolated. The isolate caused pathological changes of lung, trachea and spleen in BALB/c mice. Notably, 79 amino acid deletions in the shaft domain and 74 unique amino acid mutations were found in the fiber gene of the isolate compared with the available complete sequences for fiber genes in the GenBank database. These characteristics indicated that the isolate may represent a novel fiber genotype of BAdV-3. A pair of specific primers covering the deletion region in the fiber gene was designed to screen the prevalence of BAdV-3 encoding the novel fiber gene. The results showed that 7 of the 10 strains possessed the novel fiber gene, and these novel fiber strains were detected from six farms in which calves were just imported from five provinces, indicating that this BAdV-3 with the natural deletion fiber gene has a wide geographical distribution in China. In conclusion, our results reveal that BAdV-3 is widespread in China and a pathogenic BAdV-3 strain with a novel fiber gene has been detected at high frequency, which is beneficial to understand the prevalence and genetic evolution of BAdV-3.


Subject(s)
Adenoviridae Infections/virology , Cattle Diseases/virology , Mastadenovirus/genetics , Viral Proteins/genetics , Adenoviridae Infections/epidemiology , Adenoviridae Infections/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , China/epidemiology , Gene Deletion , Mastadenovirus/isolation & purification , Mastadenovirus/pathogenicity , Mice, Inbred BALB C , Molecular Epidemiology , Phylogeny , Prevalence , Real-Time Polymerase Chain Reaction
8.
Virus Res ; 285: 197965, 2020 08.
Article in English | MEDLINE | ID: mdl-32311385

ABSTRACT

Next generation sequencing was used to determine the whole genome sequence for two different strains of guinea pig adenovirus (GPAdV) detected in association with outbreaks of pneumonia in Australia in 1996, and in Germany in 1997 using total DNA extracted from infected archival frozen lung tissue as a template. The length of the determined genomic sequences was 37,031 bp and 37,070 bp, respectively. The nucleotide composition showed a relatively high content of guanine + cytosine (G + C) of 62 %. The 99.6 % nucleotide identity between the two sequenced viruses suggests that they may represent variants of the same genotype. The GPAdV genome exhibits the genomic features of a typical mastadenovirus with at least 32 open reading frames identified. Five novel open reading frames were found at the right end of the genomic sequence. One of them maps to the predicted E3 region and encodes a putative CR1 protein, two map to the E4 region, and two map to the l strand of L1 and L3, respectively. Our phylogenetic analysis of whole genome sequences showed that among the mammalian AdV species described to date, GPAdV is most closely related to MAdV-2 The characterization of this mastadenovirus species offers an opportunity to develop a new small animal model to study mammalian adenovirus pathogenesis.


Subject(s)
Adenoviridae Infections , Lung/virology , Mastadenovirus , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Animals , DNA, Viral , Genome, Viral , Guinea Pigs , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Phylogeny , Whole Genome Sequencing
9.
Virus Res ; 277: 197846, 2020 02.
Article in English | MEDLINE | ID: mdl-31870796

ABSTRACT

The presence of a novel adenovirus (AdV) was detected by PCR and sequencing, in the internal organs of a captive polar bear that had died in the Budapest zoo. The virus content of the samples proved to be high enough to allow for conventional Sanger sequencing on PCR-amplified genomic fragments. With this approach, the sequence of the entire genome of the putative polar bear adenovirus 1 (PBAdV-1) was obtained. Although the genome was found to be short, consisting of 27,952 base pairs merely, with a relatively balanced G + C content of 46.3 %, its organisation corresponded largely to that of a typical mastadenovirus. Every genus-common gene could be identified except that of protein IX. The short E3 region of the PBAdV-1 consisted of two novel, supposedly type-specific ORFs only, whereas no homologue of any of the E3 genes, usually conserved in mastadenoviruses, such as for example that of the 12.5 K protein, were present. In the E4 region, only the highly conserved gene of the 34 K protein was found besides two novel ORFs showing no homology to any known E4 ORFs. In silico sequence analysis revealed putative splicing donor and acceptor sites in the genes of the E1A, IVa2, DNA-dependent DNA polymerase, pTP, 33 K proteins, and also of U exon protein, all being characteristic for mastadenoviruses. Phylogenetic calculations, based on various proteins, further supported that the newly-detected PBAdV is the representative of a new species within the genus Mastadenovirus, and may represent the evolutionary lineage of adenoviruses that coevolved with carnivorans.


Subject(s)
Adenoviridae Infections/veterinary , Genome, Viral , Mastadenovirus/classification , Phylogeny , Ursidae/virology , Adenoviridae Infections/virology , Animals , Animals, Zoo/virology , DNA, Viral/genetics , Female , Mastadenovirus/isolation & purification , Sequence Analysis, DNA , Viral Proteins/genetics , Whole Genome Sequencing
10.
Article in English | MEDLINE | ID: mdl-31778390

ABSTRACT

Public parks are leisure environments widely used by both, adults and children, often accompained by their pets. Soil contamination of these environments by enteric viruses and intestinal parasites occurs through these animals feces. The aim of this work was to detect Carnivore protoparvovirus 1 (CPV-1) and different species of Mastadenovirus in soils samples from a park located in a medium-sized city in Brazil and evaluate the presence of helminth eggs and larvae in 18 points of a public park soil samples, as well as feces found on this site during six months. Parasitological analyzes were conducted through flotation and sedimentation techniques, and polymerase chain reaction (PCR) was used for viral detection. Of the 216 soil and 16 feces samples, 49% (106/216) and 12% (2/16) were positivefor nematodes larvae, respectively, through sedimentation techniques. Toxocara spp eggs were found in one soil sample and one feces sample, Trichuris spp eggs were found in only one feces sample and Hookworms eggs were found in four soil samples. After reconstruction work in the streets near the park, 30% (64/216) of the samples were positive for Human Mastadenovirus C (HAdV-C), 1.4% (3/216) for HAdV-E and 0.4% (1/216) for Canine Mastadenovirus A (CAdV-A). The parasitic forms found in this study have demonstrated that the contamination of the park's soil pose a threat to human and animal health. This was the first study to report the presence of HAdVs and CAdVs in soil samples.


Subject(s)
Ancylostomatoidea/isolation & purification , Mastadenovirus/isolation & purification , Soil Microbiology , Soil/parasitology , Toxocara/isolation & purification , Ancylostomatoidea/classification , Ancylostomatoidea/genetics , Animals , Dogs , Feces/parasitology , Humans , Mastadenovirus/classification , Mastadenovirus/genetics , Parks, Recreational , Real-Time Polymerase Chain Reaction , Toxocara/classification , Toxocara/genetics
11.
Braz J Microbiol ; 50(3): 677-684, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030411

ABSTRACT

Human mastadenovirus (HAdV) genus is related to several diseases, among them upper and lower respiratory tract illness. HAdV species B, C, D, and E are mainly associated with respiratory infections. The goal of this work was to identify the HAdV species associated with respiratory infections in hospitalized patients from southern Brazil. Samples were collected from 1996 to 2004 and 2011 to 2017. During this period, 28,524 samples were collected, and 9983 were positive for respiratory viruses, being 435 for HAdV. From these 435 samples, 57 were selected for characterization of HAdV species. For screening the presence of HAdV, a partial sequence of the DNA polymerase gene (DNApol gene) was amplified by nested PCR. Partial nucleotide sequencing was performed in positive samples, and HAdV (DNApol gene) was detected in 53 samples: species B (28; 49.1%), C (16; 28.0%), D (2; 3.5%), E (5; 8.7%), and untyped (2; 3.5%). Specie D was found only in 2017 and specie E in 2011 and 2012. The age of the patients ranged from < 1 to 81 years old, and 62.3% were male. No relationship between gender or age and identified HAdV species were observed. In addition, in the period of 2013-2017, 18 samples from patients who died were analyzed: 11 were related to species B, 4 to C, and 2 to D and 1 remained untyped. Circulation of HAdV species D and E varied over the years, but species B and C were present throughout the evaluated period. In addition, respiratory infections by HAdV affect elderly and children mainly.


Subject(s)
Adenoviridae Infections/virology , Mastadenovirus/isolation & purification , Respiratory Tract Infections/virology , Adenoviridae Infections/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Male , Mastadenovirus/classification , Mastadenovirus/genetics , Middle Aged , Phylogeny , Respiratory Tract Infections/epidemiology , Young Adult
12.
Sci Rep ; 9(1): 573, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679679

ABSTRACT

Recently, bat adenoviruses (BtAdVs) of genus Mastadenovirus have been isolated from various bat species, some of them displaying a wide host range in cell culture. In this study, we isolated two BtAdVs from Japanese wild microbats. While one isolate was classified as Bat mastadenovirus A, the other was phylogenetically independent of other BtAdVs. It was rather related to, but serologically different from, canine adenoviruses. We propose that the latter, isolated from Asian parti-colored bat, should be assigned to a novel species of Bat mastadenovirus. Both isolates replicated in various mammalian cell lines, implying their wide cell tropism. To gain insight into cell tropism of these BtAdVs, we investigated the coxsackievirus and adenovirus receptor (CXADR) for virus entry to the cells. We prepared CXADR-knockout canine kidney cells and found that replication of BtAdVs was significantly hampered in these cells. For confirmation, their replication in canine CXADR-addback cells was rescued to the levels with the original cells. We also found that viral replication was corrected in human or bat CXADR-transduced cells to similar levels as in canine CXADR-addback cells. These results suggest that BtAdVs were able to use several mammalian-derived CXADRs as entry factors.


Subject(s)
Adenoviridae Infections/veterinary , Chiroptera/virology , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Receptors, Virus/metabolism , Virus Internalization , Adenoviridae Infections/virology , Animals , Cell Line , Host Specificity , Mastadenovirus/growth & development , Phylogeny , Sequence Analysis, DNA , Viral Tropism
13.
J Vet Diagn Invest ; 31(1): 103-106, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30475680

ABSTRACT

Eleven adult African pygmy hedgehogs ( Atelerix albiventris) were added to a group of 35 animals, and within 10 d, respiratory distress affected 8 of 35 resident animals in the group, but none of the introduced animals. Three animals died following onset of clinical signs. Tissues from one animal were collected and submitted for histopathology, which revealed acute necrotizing bronchopneumonia and tracheitis with intraepithelial intranuclear inclusion bodies. Electron microscopy identified 75-90 nm diameter encapsulated icosahedral virions. Degenerate nested PCR analysis identified adenovirus within the affected lung tissue. Deep sequencing showed 100% homology to skunk adenovirus 1 (SkAdV-1). Adenoviruses are usually species-adapted and -specific, but our case supports the single previous report of non-skunk infection with SkAdV-1, indicating that this virus can infect other species, and further shows that it can cause fatal disease.


Subject(s)
Adenoviridae Infections/veterinary , Bronchopneumonia/veterinary , Hedgehogs , Mastadenovirus/isolation & purification , Adenoviridae Infections/diagnosis , Adenoviridae Infections/pathology , Adenoviridae Infections/virology , Animals , Bronchopneumonia/diagnosis , Bronchopneumonia/pathology , Bronchopneumonia/virology , Microscopy, Electron, Transmission/veterinary , Polymerase Chain Reaction
14.
Braz. J. Pharm. Sci. (Online) ; 55: e18063, 2019. tab
Article in English | LILACS | ID: biblio-1039055

ABSTRACT

Cymbopogon citratus and C. nardus are noteworthy among the several existing plant species displaying medicinal properties, due to the potential pharmacological activity of these species, including antiviral, antibacterial, antifungal and anti-trypanosomal activities. The objective of this study was to carry out in vitro toxicity tests of plant extracts from both species and analyze potential antiviral activity against Human mastadenovirus serotype 5 (HAdV-5). Two cell lines (A549 and VERO) were used and mitochondrial and lysosomal viability were determined by the MTT and neutral red assay, respectively, after two exposure times (24 hours and six days). The aim of these assays was to counteract the behavior of the extracts against the different cell lines and determine their non-toxic concentration range, in order to evaluate possible antiviral activity against HAdV-5. Plaque reduction and inhibition index of viral titer assays were performed using the maximum non-cytotoxic concentrations (MNCC) of each extract. The results indicate MNCC at 625 µg/mL for all extracts, except for Cymbopogon nardus obtained with 80% ethanol (CN80), which showed toxicity at concentrations higher than 312.5 µg/mL. CN80 was the only extract that displayed potential activity against HAdV-5, at a concentration of 75 µg/mL, becoming a candidate for extract fraction purification and/or the isolation of substances related to the observed antiviral activity


Subject(s)
Plant Extracts/analysis , Mastadenovirus/isolation & purification , Cymbopogon/toxicity , Antiviral Agents/analysis , In Vitro Techniques , Cell Survival
15.
Viruses ; 10(8)2018 08 20.
Article in English | MEDLINE | ID: mdl-30127258

ABSTRACT

In the context of long-term screening for viruses on Western Palaearctic bats, we tested for the presence of adenovirus 1392 oropharyngeal swabs and 325 stool samples taken from 27 bat species. Adenoviruses were detected in 12 species of the Vespertilionidae and the Rhinolophidae families. Fifty positive respiratory and 26 positive stool samples were studied. Phylogenetic analyses of partial hexon protein and partial DNA-dependent DNA polymerase genes indicate that all these bat adenoviruses belong to the genus Mastadenovirus but without constituting a monophyletic cluster. According to genetic identities, the new groups are distinct to the previously described Bat mastadenovirus A and B species and contribute with potentially new members. Our data support that diversity of bat mastadenovirus is host-dependent and increase the knowledge of potentially pathogenic virus from bats. Due to the active role of bats as viral reservoirs, the characterization of these viruses is relevant for Public Health.


Subject(s)
Adenoviridae Infections/veterinary , Chiroptera/virology , Genome, Viral , Mastadenovirus/genetics , Phylogeny , Viral Proteins/genetics , Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Africa, Northern/epidemiology , Animals , Asia/epidemiology , Capsid Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Europe/epidemiology , Feces/virology , Gene Expression , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Oropharynx/virology , Phylogeography
16.
mSphere ; 3(4)2018 07 25.
Article in English | MEDLINE | ID: mdl-30045965

ABSTRACT

Polar bears in captivity can be exposed to opportunistic pathogens not present in their natural environments. A 4-month-old polar bear (Ursus maritimus) living in an isolated enclosure with his mother in the Tierpark Berlin, Berlin, Germany, was suffering from severe abdominal pain, mild diarrhea, and loss of appetite and died in early 2017. Histopathology revealed severe hepatic degeneration and necrosis without evidence of inflammation or inclusion bodies, although a viral infection had been suspected on the basis of the clinical signs. We searched for nucleic acids of pathogens by shotgun high-throughput sequencing (HTS) from genomic DNA and cDNA extracted from tissue and blood. We identified a novel Mastadenovirus and assembled a nearly complete genome from the shotgun sequences. Quantitative PCR (qPCR) revealed that viral DNA was present in various concentrations in all tissues examined and that the highest concentrations were found in blood. Viral culture did not yield cytopathic effects, but qPCR suggested that virus replication was sustained for up to three passages. Positive immunofluorescence staining confirmed that the virus was able to replicate in the cells during early passage. Phylogenetic analysis demonstrated that the virus is highly divergent compared to other previously identified Mastadenovirus members and basal to most known viral clades. The virus was found only in the 4-month-old bear and not in other captive polar bears tested. We surmised, therefore, that the polar bear was infected from an unknown reservoir, illustrating that adenoviral diversity remains underestimated and that cross-species transmission of viruses can occur even under conditions of relative isolation.IMPORTANCE Cross-species transmission of viral pathogens is becoming an increasing problem for captive-animal facilities. This study highlights how animals in captivity are vulnerable to novel opportunistic pathogens, many of which do not result in straightforward diagnosis from symptoms and histopathology. In this study, a novel pathogen was suspected to have contributed to the death of a juvenile polar bear. HTS techniques were employed, and a novel Mastadenovirus was isolated. The virus was present in both the tissue and blood samples. Phylogenetic analysis of the virus at both the gene and genome levels revealed that it is highly divergent to other known mastadenoviruses. Overall, this study shows that animals in isolated conditions still come into contact with novel pathogens, and for many of these pathogens, the host reservoir and mode of transmission are yet to be determined.


Subject(s)
Adenoviridae Infections/veterinary , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Ursidae/virology , Adenoviridae Infections/virology , Animal Structures/virology , Animals , Animals, Zoo , Berlin , Genome, Viral , Mastadenovirus/genetics , Mastadenovirus/growth & development , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Virus Cultivation , Virus Replication
17.
J Med Virol ; 90(5): 881-889, 2018 05.
Article in English | MEDLINE | ID: mdl-29396992

ABSTRACT

The aim of this study was to report the emergence of a recombinant human mastadenovirus (HAdV) type 85 (HAdV-85) and to describe its genomic and clinical characteristics. The strains were detected and identified in Japan in cases of adenoviral conjunctivitis including epidemic keratoconjunctivitis (EKC). The type was designated as HAdV-85 based on the novel combination of penton base (P = HAdV-37), hexon (H = HAdV-19), and fiber (F = HAdV-8). The whole genome sequence determined for HAdV-85 was compared against sequences of other types in the same species. The results of the phylogenetic analysis suggested a recombinant origin between HAdV-53 and HAdV-64, which have been two major causes of adenoviral EKC in Japan over the past decade. During the period between 2008 and 2016 in Kumamoto city, southwest of Japan, 311 cases diagnosed with conjunctivitis were diagnosed as being the consequence of adenoviral infections. Among them, 11 cases were determined to have been caused by HAdV-85 since 2015. Thus, HAdV-85 could be an emerging causative agent of adenoviral conjunctivitis.


Subject(s)
Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Keratoconjunctivitis, Infectious/epidemiology , Keratoconjunctivitis, Infectious/virology , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Adenoviridae Infections/pathology , Adult , Animals , DNA, Viral/chemistry , DNA, Viral/genetics , Evolution, Molecular , Female , Humans , Japan/epidemiology , Keratoconjunctivitis, Infectious/pathology , Male , Mastadenovirus/genetics , Middle Aged , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA , Viral Structural Proteins/genetics , Young Adult
18.
Viruses ; 9(12)2017 12 04.
Article in English | MEDLINE | ID: mdl-29207524

ABSTRACT

Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name "Bat mastadenovirus H". Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission.


Subject(s)
Chiroptera/virology , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Animals , Base Composition , Chlorocebus aethiops , Cytopathogenic Effect, Viral , DNA-Directed DNA Polymerase/genetics , Genome, Viral , Microscopy, Electron , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Serotyping , Spleen/virology , Vero Cells , Virus Cultivation , Whole Genome Sequencing , Zambia
19.
Virus Res ; 238: 198-203, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28662929

ABSTRACT

A novel adenovirus, CeAdV1, was isolated from buffy coat and nasal swab samples collected from two captive white-tailed deer (Odocoileus virginianus) fawns. The isolation was an incidental finding in the course of screening animals for use in a research study on an unrelated pathogen. In the screening process, virus isolation was performed on both nasal swabs and buffy coat samples and cytopathic effect was observed. Electron microscopy revealed viral particles with the shape and morphology of an adenovirus. Next generation sequencing followed by phylogenetic analysis classified this virus to the Mastadenovirus genus. Its sequence was genetically distinct from all other recognized species in this genus, with only 76% sequence identity to its closest genetic match, bovine adenovirus 3 (BAdV3). The virus could be propagated in bovine derived cells but grew to a higher titer in cervid derived cells. Inoculation of white-tailed deer fawns with the isolated virus resulted in pyrexia, depletion of thymus tissue and mild respiratory disease. Comparative serology performed using convalescent sera revealed distinct antigenic differences between the novel cervid adenovirus and BAdV3. A retrospective serological survey of the captive deer herd indicated that this virus had been circulating in the herd for at least 14 years with no report of clinical disease. A survey of serum collected from free ranging mule deer residing in Nevada revealed high serum titers against this novel adenovirus.


Subject(s)
Adenoviridae Infections/veterinary , Deer/virology , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Phylogeny , Adenoviridae Infections/pathology , Adenoviridae Infections/virology , Animals , Cytopathogenic Effect, Viral , DNA, Viral/chemistry , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Leukocytes/virology , Mastadenovirus/genetics , Mastadenovirus/ultrastructure , Microscopy, Electron, Transmission , Nasal Mucosa/virology , Nevada , Sequence Analysis, DNA , Sequence Homology , Serotyping , Virion/ultrastructure , Virus Cultivation
20.
Indian J Med Res ; 145(1): 90-96, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28574020

ABSTRACT

BACKGROUND & OBJECTIVES: Bats are recognized as important reservoirs for emerging infectious disease and some unknown viral diseases. Two novel viruses, Malsoor virus (family Bunyaviridae, genus, Phlebovirus) and a novel adenovirus (AdV) (family, Adenoviridae genus, Mastadenovirus), were identified from Rousettus bats in the Maharashtra State of India. This study was done to develop and optimize real time reverse transcription - polymerase chain reaction (RT-PCR) assays for Malsoor virus and real time and nested PCR for adenovirus from Rousettus bats. METHODS: For rapid and accurate screening of Malsoor virus and adenovirus a nested polymerase chain reaction and TaqMan-based real-time PCR were developed. Highly conserved region of nucleoprotein gene of phleboviruses and polymerase gene sequence from the Indian bat AdV isolate polyprotein gene were selected respectively for diagnostic assay development of Malsoor virus and AdV. Sensitivity and specificity of assays were calculated and optimized assays were used to screen bat samples. RESULTS: Molecular diagnostic assays were developed for screening of Malsoor virus and AdV and those were found to be specific. Based on the experiments performed with different parameters, nested PCR was found to be more sensitive than real-time PCR; however, for rapid screening, real-time PCR can be used and further nested PCR can be used for final confirmation or in those laboratories where real-time facility/expertise is not existing. INTERPRETATION & CONCLUSIONS: This study reports the development and optimization of nested RT-PCR and a TaqMan-based real-time PCR for Malsoor virus and AdV. The diagnostic assays can be used for rapid detection of these novel viruses to understand their prevalence among bat population.


Subject(s)
Adenoviridae Infections/diagnosis , Adenoviridae/isolation & purification , Mastadenovirus/isolation & purification , Polyproteins/isolation & purification , Adenoviridae/pathogenicity , Adenoviridae Infections/genetics , Adenoviridae Infections/virology , Animals , Chiroptera/virology , Diagnostic Tests, Routine , Humans , India , Mastadenovirus/pathogenicity , Polyproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...