Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.016
Filter
1.
BMC Public Health ; 24(1): 2529, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289643

ABSTRACT

BACKGROUND: Both interpregnancy intervals (IPI) and environmental factors might contribute to low birth weight (LBW). However, the extent to which air pollution influences the effect of IPIs on LBW remains unclear. We aimed to investigate whether IPI and air pollution jointly affect LBW. METHODS: A retrospective cohort study was designed in this study. The data of birth records was collected from the Jiangsu Maternal Child Information System, covering January 2020 to June 2021 in Nantong city, China. IPI was defined as the duration between the delivery date for last live birth and date of LMP for the subsequent birth. The maternal exposure to ambient air pollutants during pregnancy-including particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), PM10, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO)-was estimated using a hybrid kriging-LUR-RF model. A novel air pollution score was proposed, assessing combined exposure to five pollutants (excluding CO) by summing their concentrations, weighted by LBW regression coefficients. Multivariate logistic regression models were used to estimate the effects of IPI, air pollution and their interactions on LBW. Relative excess risk due to interaction (RERI), attributable proportion of interaction (AP) and synergy index (S) were utilized to assess the additive interaction. RESULTS: Among 10, 512 singleton live births, the LBW rate was 3.7%. The IPI-LBW risk curve exhibited an L-shaped pattern. The odds ratios (ORs) for LBW for each interquartile range increase in PM2.5, PM10, O3 and the air pollution score were 1.16 (95% CI: 1.01-1.32), 1.30 (1.06-1.59), 1.22 (1.06-1.41), and 1.32 (1.10-1.60) during the entire pregnancy, respectively. An additive interaction between IPI and PM2.5 was noted during the first trimester. Compared to records with normal IPI and low PM2.5 exposure, those with short IPI and high PM2.5 exposure had the highest risk of LBW (relative risk = 3.53, 95% CI: 1.85-6.49, first trimester). CONCLUSION: The study demonstrates a synergistic effect of interpregnancy interval and air pollution on LBW, indicating that rational birth spacing and air pollution control can jointly improve LBW outcomes.


Subject(s)
Air Pollutants , Air Pollution , Birth Intervals , Infant, Low Birth Weight , Maternal Exposure , Humans , Retrospective Studies , China/epidemiology , Female , Air Pollution/adverse effects , Air Pollution/analysis , Pregnancy , Adult , Infant, Newborn , Birth Intervals/statistics & numerical data , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/adverse effects , Risk Factors , Particulate Matter/analysis , Particulate Matter/adverse effects , Male , Young Adult
2.
Environ Health Perspect ; 132(9): 94002, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39315750

ABSTRACT

The well-known cotinine test captures recent smoking, and survey responses are not always accurate. Now researchers propose a measure of DNA methylation in placental tissue that may be better than either.


Subject(s)
Biomarkers , DNA Methylation , Epigenesis, Genetic , Humans , Female , Pregnancy , Biomarkers/analysis , Placenta/metabolism , Cotinine/analysis , Tobacco Smoke Pollution , Maternal Exposure/statistics & numerical data , Smoking
3.
Environ Health ; 23(1): 77, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304890

ABSTRACT

Groundwater arsenic poisoning has posed serious health hazards in the exposed population. The objective of the study is to evaluate the arsenic ingestion from breastmilk among pediatric population in Bihar. In the present study, the total women selected were n = 513. Out of which n = 378 women after consent provided their breastmilk for the study, n = 58 subjects were non-lactating but had some type of disease in them and n = 77 subjects denied for the breastmilk sample. Hence, they were selected for the women health study. In addition, urine samples from n = 184 infants' urine were collected for human arsenic exposure study. The study reveals that the arsenic content in the exposed women (in 55%) was significantly high in the breast milk against the WHO permissible limit 0.64 µg/L followed by their urine and blood samples as biological marker. Moreover, the child's urine also had arsenic content greater than the permissible limit (< 50 µg/L) in 67% of the studied children from the arsenic exposed regions. Concerningly, the rate at which arsenic is eliminated from an infant's body via urine in real time was only 50%. This arsenic exposure to young infants has caused potential risks and future health implications. Moreover, the arsenic content was also very high in the analyzed staple food samples such as rice, wheat and potato which is the major cause for arsenic contamination in breastmilk. The study advocates for prompt action to address the issue and implement stringent legislative measures in order to mitigate and eradicate this pressing problem that has implications for future generations.


Subject(s)
Arsenic , Maternal Exposure , Milk, Human , Water Pollutants , Humans , Milk, Human/chemistry , Arsenic/analysis , Arsenic/blood , Arsenic/toxicity , Arsenic/urine , India , Water Pollutants/toxicity , Water Pollutants/urine , Infant, Newborn , Infant , Food , Oryza/chemistry , Triticum/chemistry , Solanum tuberosum/chemistry
4.
Sci Total Environ ; 953: 175978, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39226966

ABSTRACT

Production of per- and polyfluoroalkyl substances (PFAS) has shifted from long-chain perfluoroalkyl acids to short-chain compounds and those with ether bonds in the carbon chain. Next-generation perfluoroalkylether PFAS include HFPO-DA ("GenX chemicals"), Nafion Byproducts, and the PFOx homologous series that includes perfluoro-3,5,7,9-butaoxadecanoic acid (PFO4DA) and perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA). PFO4DA and PFO5DoA have been detected in serum and/or tissues from humans and wildlife proximal to contamination point sources. However, toxicity data are extremely limited, with no in vivo developmental toxicology data. To address these data gaps, pregnant Sprague-Dawley rats were exposed via oral gavage to vehicle, PFO4DA, or PFO5DoA across a series of doses (0.1 to 62.5 mg/kg/day) from gestation day (GD) 18-22. Hepatic transcriptomics were assayed in dams and fetuses, and serum metabolomics in dams. These data were overlaid with serum PFO4DA and PFO5DoA concentrations to perform dose-response modeling. Both dams and fetuses exhibited dose-responsive disruption of hepatic gene expression in response to PFO4DA or PFO5DoA, with fetal expression disrupted at lower doses than dams. Several differentially expressed genes were upregulated by every dose of PFO5DoA in both maternal and fetal samples, including genes encoding enzymes that hydrolyze acyl-coA to free fatty acids. Maternal serum metabolomics revealed PFO4DA exposure did not induce significant changes at any tested dose, whereas PFO5DoA exposure resulted in dose-dependent differential metabolite abundance for 149 unique metabolites. Multi-omics pathway analyses of integrated maternal liver transcriptomics and serum metabolomics revealed significant convergent changes as low as 3 mg/kg/d PFO4DA and 0.3 mg/kg/d PFO5DoA exposure. Overall, transcriptomic and metabolomic effects of PFO4DA and PFO5DoA appear consistent with other carboxylic acid PFAS, with primary changes related to lipid metabolism, bile acids, cholesterol, and cellular stress. Importantly, PFO5DoA exposure more potently induced changes in maternal and fetal hepatic gene expression and maternal circulating metabolites, despite high structural similarity. Further, we report in vitro PPARα and PPARγ receptor activation for both compounds as putative molecular mechanisms. This work demonstrates the potential developmental toxicity of alternative moiety perfluoroethers and highlights the developing liver as particularly vulnerable to transcriptomic disruption. Synopsis: Developmental exposure to fluoroether carboxylic acids PFO4DA and PFO5DoA result in differential impacts on hepatic transcriptome in dams and offspring and circulating metabolome in dams, with PFO5DoA exhibiting higher potency than PFO4DA.


Subject(s)
Fluorocarbons , Liver , Rats, Sprague-Dawley , Transcriptome , Animals , Female , Fluorocarbons/toxicity , Rats , Liver/metabolism , Liver/drug effects , Transcriptome/drug effects , Pregnancy , Metabolomics , Environmental Pollutants/toxicity , Maternal Exposure
5.
Sci Total Environ ; 953: 176014, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39241881

ABSTRACT

BACKGROUND: While ambient air pollution has been associated with fetal growth in singletons, its correlation among twins is not well-established due to limited research in this area. METHODS: The effects of exposure to PM2.5 particulate matter and its main components during pregnancy on birth weight and the incidence of large for gestational age (LGA) were investigated in 6177 twins born after in vitro fertilization at the Center for Reproductive Medicine of Shanghai Ninth People's Hospital (Shanghai, China) between 2007 and 2021. Other birth weight-related outcomes included macrosomia, low birth weight, very low birth weight, and small for gestational age (SGA). The associations of PM2.5 exposure with birth weight outcomes were analyzed using linear mixed-effect models and random-effect logistic regression models. Distributed lag models were incorporated to estimate the time-varying associations. RESULTS: The findings revealed that an interquartile range (IQR) increase (18 µg/m3) in PM2.5 exposure over the entire pregnancy was associated with a significant increase (57.06 g, 95 % confidence interval [CI]: 30.91, 83.22) in the total birth weight of twins. The effect was more pronounced in larger fetuses (34.93 g, 95 % CI: 21.13, 48.72) compared to smaller fetuses (21.77 g, 95 % CI: 6.94, 36.60) within twin pregnancies. Additionally, an IQR increase in PM2.5 exposure over the entire pregnancy was associated with a 34 % increase in the risk of LGA (95 % CI: 11 %, 63 %). Furthermore, specific chemical components of PM2.5, such as sulfate (SO42-), exhibited effect estimates comparable to the PM2.5 total mass. CONCLUSION: Overall, the findings indicate that exposures to PM2.5 and its specific components are associated with fetal overgrowth in twins.


Subject(s)
Air Pollutants , Birth Weight , Fertilization in Vitro , Fetal Development , Maternal Exposure , Particulate Matter , Female , Humans , Maternal Exposure/statistics & numerical data , Pregnancy , China , Fetal Development/drug effects , Air Pollutants/toxicity , Birth Weight/drug effects , Adult , Twins , Air Pollution/statistics & numerical data , Infant, Newborn
6.
Sci Total Environ ; 953: 176089, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39250973

ABSTRACT

BACKGROUND: Ambient air pollution during pregnancy has been linked with postpartum depression up to 12 months, but few studies have investigated its impact on persistent depression beyond 12 months postpartum. This study aimed to evaluate prenatal ambient air pollution exposure and the risk of persistent depression over 3 years after childbirth and to identify windows of susceptibility. METHODS: This study included 361 predominantly low-income Hispanic/Latina participants with full-term pregnancies in the Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) cohort. We estimated daily residential PM2.5, PM10, NO2, and O3 concentrations throughout 37 gestational weeks using inverse-distance squared spatial interpolation from monitoring data and calculated weekly averaged levels. Depression was assessed by the 20-item Center for Epidemiologic Studies-Depression (CES-D) scale at 12, 24, and 36 months postpartum, with persistent postpartum depression defined as a CES-D score ≥16 at any of these timepoints. We performed robust Poisson log-linear distributed lag models (DLM) via generalized estimating equations (GEE) to estimate the adjusted risk ratio (RR). RESULTS: Depression was observed in 17.8 %, 17.5 %, and 13.4 % of participants at 12, 24, and 36 months, respectively. We found one IQR increase (3.9 ppb) in prenatal exposure to NO2 during the identified sensitive window of gestational weeks 13-29 was associated with a cumulative risk ratio of 3.86 (95 % CI: 3.24, 4.59) for persistent depression 1-3 years postpartum. We also found one IQR increase (7.4 µg/m3) in prenatal exposure to PM10 during gestation weeks 12-28 was associated a cumulative risk ratio of 3.88 (95 % CI: 3.04, 4.96) for persistent depression. No clear sensitive windows were identified for PM2.5 or O3. CONCLUSIONS: Mid-pregnancy PM10 and NO2 exposures were associated with nearly 4-fold increased risks of persistent depression after pregnancy, which has critical implications for prevention of perinatal mental health outcomes.


Subject(s)
Air Pollutants , Air Pollution , Depression, Postpartum , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Depression, Postpartum/epidemiology , Air Pollution/statistics & numerical data , Air Pollution/adverse effects , Adult , Air Pollutants/analysis , Air Pollutants/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Maternal Exposure/statistics & numerical data , Particulate Matter/analysis , Young Adult
7.
Environ Int ; 191: 108967, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217724

ABSTRACT

Environmental chemicals and pollutants are increasingly recognized for their potential transgenerational effects. Acetyl tributyl citrate (ATBC), a widely used plasticizer substituting di-(2-ethylhexyl) phthalate (DEHP), was identified as an inducer of lipogenesis in male mice by our previous research. This study aimed to investigate the impact of ATBC exposure on the metabolic homeostasis of female mice and simultaneously evaluate its intergenerational effects. Female C57BL/6J mice were orally exposed to ATBC (0.01 or 1 µg/kg/day) for 10 weeks before mating with unexposed male mice. The resulting F1 female mice were bred with unexposed males to generate F2 offspring. Our results indicated that 10-week ATBC exposure disrupted glucose metabolism homeostasis and the reproductive system in F0 female mice. In F1 female mice, elevated liver lipid levels and mild insulin resistance were observed. In the F2 generation, maternal ATBC exposure resulted in increased weight gain, elevated liver triglycerides, and higher fasting blood glucose levels, primarily in F2 male mice. These findings suggest that maternal ATBC exposure may exert intergenerational disturbing effects on glucose metabolism across generations of mice. Further investigation is needed to evaluate the health risks associated with ATBC exposure.


Subject(s)
Maternal Exposure , Mice, Inbred C57BL , Plasticizers , Animals , Female , Male , Mice , Plasticizers/toxicity , Pregnancy , Liver/drug effects , Liver/metabolism , Blood Glucose/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Trialkyltin Compounds/toxicity , Insulin Resistance , Environmental Pollutants/toxicity
8.
Environ Int ; 191: 108996, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241335

ABSTRACT

Prenatal exposure to organophosphorus flame retardants (OPFRs) has been linked with adverse effects on reproductive health, and new OPFRs are continually emerging. In this study, emerging OPFRs, such as bis(2-ethylhexyl) phenyl phosphate (BEHPP), triamyl phosphate (TAP), tris(4-tert-butylphenyl) phosphate (T4tBPPP), oxydi-2,1-ethanediyl phosphoric acid tetrakis(2 chloro-1-methylethyl) ester (RDT905), cresyl diphenyl phosphate (CDP), and 2-isopropylphenyl diphenyl phosphate (2IPPDPP), were detected in 84 %, 100 %, 100 %, 52 %, 40 %, and 40 % of 25 decidua samples with average concentrations of 2.36, 6.21, 1.5, 2.6, 1.07, and 0.09 ng/g of dry weight (dw), respectively. Six of the aforementioned emerging OPFRs (BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP) were simultaneously detected in paired chorionic villus samples, and their average concentrations were 11.3, 1.77, 3.64, 0.11, 0.58, and 3.34 ng/g, which were significantly higher than and positively correlated with those in decidua samples. The geometric mean concentration ratios between chorionic villus and decidua samples for BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP were 4.02, 1.61, 1.73, 1.48, 0.82, and 0.69, respectively, consistent with transthyretin binding-dependent behavior. Prenatal exposure to such emerging OPFRs, especially for BEHPP with relatively high concentration and maternal transfer, is of high concern from the view of women's reproductive health.


Subject(s)
Flame Retardants , Maternal Exposure , Organophosphates , Flame Retardants/analysis , Female , Humans , Pregnancy , Organophosphorus Compounds/analysis , Adult , Young Adult , Environmental Pollutants/analysis , Maternal-Fetal Exchange
9.
Environ Int ; 191: 109003, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39276591

ABSTRACT

Although emerging evidence on the association between per- and polyfluoroalkyl substances (PFASs) and neurodevelopment have been investigated, there is no consensus on the effect of maternal PFASs on neurodevelopment in offspring. Here, we assessed the risk of maternal PFASs exposure on the neurodevelopment of offspring using a novel Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy based on multiple evidence. The evidence from five online databases were analyzed the effect of PFASs on neurodevelopment. The potential neurodevelopment risk of PFASs was evaluated by the TRAEC strategy, which was conducted on a comprehensive scoring system with reliability, correlation, outcome fitness and integrity. The studies from five databases and additional researchers' experiments were included the present study to proceed following risk assessment. Based on the framework with TRAEC strategy, the comprehensive evaluation of health risks was classified as low (absolute value 0-4), medium (absolute value 4-8), high (absolute value 8-10). In the present study, the effect of PFASs exposure on neurodevelopment was a medium-risk level with 5.61 overall risk-score. The population-attributable risk (PAR) was 8.26 % for maternal PFASs exposure. The study identified a low-risk effect of prenatal PFASs exposure on ASD and behavioral disabilities. The chain length, type of PFASs and neurodevelopmental trajectories contributed to the risk of maternal PFASs on the neurodevelopment of offspring. Consistent with results of four criteria-based tools (ToxRTool, SciRAP, OHAT and IRIS), health risk assessment based on the TRAEC strategy demonstrated robustness and reliability in the present study. These results illustrated a medium-risk effect of maternal PFASs exposure on neurodevelopmental disorders of offspring. In addition, the TRAEC strategy provided a scientific and structured method for effect evaluation between prenatal PFASs and neurodevelopmental disorders, promoting the consistency and validation in risk assessment.


Subject(s)
Environmental Pollutants , Fluorocarbons , Maternal Exposure , Prenatal Exposure Delayed Effects , Risk Assessment , Humans , Fluorocarbons/toxicity , Pregnancy , Female , Environmental Pollutants/toxicity , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Neurodevelopmental Disorders/chemically induced
10.
Environ Health Perspect ; 132(9): 97011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39298647

ABSTRACT

BACKGROUND: A broad suite of bisphenol S (BPS) derivatives as alternatives for BPS have been identified in various human biological samples, including 4-hydroxyphenyl 4-isopropoxyphenylsulfone (BPSIP) detected in human umbilical cord plasma and breast milk. However, very little is known about the health outcomes of prenatal BPS derivative exposure to offspring. OBJECTIVES: Our study aimed to investigate the response of hepatic cholesterol metabolism by sex in offspring of dams exposed to BPSIP. METHODS: Pregnant ICR mice were exposed to 5µg/kg body weight (BW)/day of BPSIP, BPS, or E2 through drinking water from gestational day one until the pups were weaned. The concentration of BPSIP, BPS, or E2 in the plasma and liver of pups was determined by liquid chromatography-tandem mass spectrometry. Metabolic phenotypes were recorded, and histopathology was examined for liver impairment. Transcriptome analysis was employed to characterize the distribution and expression patterns of differentially expressed genes across sexes. The metabolic regulation was validated by quantitative real-time PCR, immunohistochemistry, and immunoblotting. The role of estrogen receptors (ERs) in mediating sex-dependent effects was investigated using animal models and liver organoids. RESULTS: Pups of dams exposed to BPSIP showed a higher serum cholesterol level, and liver cholesterol levels were higher in females and lower in males than in the controls. BPSIP concentration in the male liver was 1.22±0.25 ng/g and 0.69±0.27 ng/g in the female liver. Histopathology analysis showed steatosis and lipid deposition in both male and female offspring. Transcriptome and gene expression analyses identified sex-specific differences in cholesterol biosynthesis, absorption, disposal, and efflux between pups of dams exposed to BPSIP and those in controls. In vivo, chromatin immunoprecipitation analysis revealed that the binding of ERα protein to key genes such as Hmgcr, Pcsk9, and Abcg5 was attenuated in BPSIP-exposed females compared to controls, while it was enhanced in males. In vitro, the liver organoid experiments demonstrated that restoration of differential expression induced by BPSIP in key genes, such as Hmgcr, Ldlr, and Cyp7a1, to levels comparable to the controls was only achieved when treated with a combination of ERα agonist and ERß agonist. DISCUSSION: Findings from this study suggest that perinatal exposure to BPSIP disrupted cholesterol metabolism in a sex-specific manner in a mouse model, in which ERα played a crucial role both in vivo and in vitro. Therefore, it is crucial to systematically evaluate BPS derivatives to protect maternal health during pregnancy and prevent the transmission of metabolic disorders across generations. https://doi.org/10.1289/EHP14643.


Subject(s)
Cholesterol , Liver , Mice, Inbred ICR , Phenols , Animals , Female , Male , Mice , Cholesterol/metabolism , Liver/drug effects , Liver/metabolism , Pregnancy , Phenols/toxicity , Prenatal Exposure Delayed Effects , Sulfones/toxicity , Maternal Exposure
11.
PLoS One ; 19(9): e0300406, 2024.
Article in English | MEDLINE | ID: mdl-39240849

ABSTRACT

BACKGROUND: The Australian National Perinatal Data Collection collates all live and stillbirths from States and Territories in Australia. In that database, maternal cigarette smoking is noted twice (smoking <20 weeks gestation; smoking >20 weeks gestation). Cannabis use and other forms of nicotine use, for example vaping and nicotine replacement therapy, are nor reported. The 2021 report shows the rate of smoking for Australian Indigenous mothers was 42% compared with 11% for Australian non-Indigenous mothers. Evidence shows that Indigenous babies exposed to maternal smoking have a higher rate of adverse outcomes compared to non-Indigenous babies exposed to maternal smoking (S1 File). OBJECTIVES: The reasons for the differences in health outcome between Indigenous and non-Indigenous pregnancies exposed to tobacco and nicotine is unknown but will be explored in this project through a number of activities. Firstly, the patterns of parental and household tobacco, nicotine and cannabis use and exposure will be mapped during pregnancy. Secondly, a range of biological samples will be collected to enable the first determination of Australian Indigenous people's nicotine and cannabis metabolism during pregnancy; this assessment will be informed by pharmacogenomic analysis. Thirdly, the pharmacokinetic and pharmacogenomic findings will be considered against maternal, placental, foetal and neonatal outcomes. Lastly, an assessment of population health literacy and risk perception related to tobacco, nicotine and cannabis products peri-pregnancy will be undertaken. METHODS: This is a community-driven, co-designed, prospective, mixed-method observational study with regional Queensland parents expecting an Australian Indigenous baby and their close house-hold contacts during the peri-gestational period. The research utilises a multi-pronged and multi-disciplinary approach to explore interlinked objectives. RESULTS: A sample of 80 mothers expecting an Australian Indigenous baby will be recruited. This sample size will allow estimation of at least 90% sensitivity and specificity for the screening tool which maps the patterns of tobacco and nicotine use and exposure versus urinary cotinine with 95% CI within ±7% of the point estimate. The sample size required for other aspects of the research is less (pharmacokinetic and genomic n = 50, and the placental aspects n = 40), however from all 80 mothers, all samples will be collected. CONCLUSIONS: Results will be reported using the STROBE guidelines for observational studies. FORWARD: We acknowledge the Traditional Custodians, the Butchulla people, of the lands and waters upon which this research is conducted. We acknowledge their continuing connections to country and pay our respects to Elders past, present and emerging. Notation: In this document, the terms Aboriginal and Torres Strait Islander and Indigenous are used interchangeably for Australia's First Nations People. No disrespect is intended, and we acknowledge the rich cultural diversity of the groups of peoples that are the Traditional Custodians of the land with which they identify and with whom they share a connection and ancestry.


Subject(s)
Marijuana Use , Maternal Exposure , Nicotine , Tobacco Use , Adult , Female , Humans , Pregnancy , Australia/epidemiology , Cannabis/adverse effects , Maternal Exposure/adverse effects , Nicotine/adverse effects , Pregnancy Outcome/epidemiology , Prenatal Exposure Delayed Effects , Australian Aboriginal and Torres Strait Islander Peoples , Tobacco Use/adverse effects , Marijuana Use/adverse effects
12.
Wei Sheng Yan Jiu ; 53(5): 771-777, 2024 Sep.
Article in Chinese | MEDLINE | ID: mdl-39308109

ABSTRACT

OBJECTIVE: To probe into the protective effect of different dose of secoisolariciresinol diglucoside(SDG) on brain of offspring of mice anainst oxidative damage and inflammatory reaction induced by maternal exposure to trans fatty acids(TFA) during gestation, and observe the the changes of regulating Nrf2/Keap1 pathway in the course. METHODS: 30 healthy female mice(C57BL/6) were divided into 5 groups randomly, they are respectively control group, TFA-exposed group, and three SDG-intervention groups(low-(TFA+LSDG), medium-(TFA+MSDG) and high-(TFA+HSDG)). The pregnancy mice of control group and TFA group were treated with distilled water and 60 mg/kg·d TFA by gavage, in the same time, the mice of three SDG-intervention groups were treated with 60 mg/kg·d TFA by gavage and fed with feed included SDG(10, 20 and 30 mg/kg). The treatment to pregnancy mice continued to birth of offspring. After 21 days of lactation, the offspring were killed under anesthesia and the experiment was ended. The coefficient of brain was calculated. The levels of superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), malondialdehyde(MDA), tumor necrosis factor-α(TNF-α), interferon-γ(IFN-γ) and amyloid-ß(Aß)of brain were detected. RT-PCR and Western Blot was used to detected gene expression and protein levels of nuclear factor erythroid-2 related factor 2(Nrf2), kelch-like ECH-associated protein 1(Keap1), quinone oxidoreductase 1(NQO1) and hemeoxygenase-l(HO-1). RESULTS: Compared with control group, the brain coefficient and Aß1-40 of offspring of TFA-group had no significant changes(P>0.05), the activity of SOD and GSH-Px reduced, the content of MDA, IFN-γ, TNF-α and Aß1-42 increased, the level of mRNA and protein expression of Nrf2, NQO1 and HO-1 decreased and the level of mRNA and protein expression of Keap1 increase because of the exposion to TFA during gestation and all the differences were statistically significant(P<0.05). Compared with TFA-group, the brain coefficient, Aß1-40 and the level of NQO1 mRNA of offspring of three SDG-intervention groups had no significant changes(P>0.05), the activity of SOD(the middle and high dose SDG intervention groups) and GSH-Px(three SDG-intervention groups) increased, the content of MDA(the middle and high dose SDG intervention groups), IFN-γ(the middle and high dose SDG intervention groups), TNF-α(three SDG-intervention groups) and Aß1-42(the middle and high dose SDG intervention groups) decreased, the mRNA expression of Nrf2 and HO-1(the middle and high dose SDG intervention groups) was up-regulated, the mRNA expression of Keap1(the middle and high dose SDG intervention group) decreased, proteic expression of Nrf2, NQO1 and HO-1 of three SDG-intervention groups increase and the level of protein of Keap1 decreased because of the intervention of SDG during gestation(P<0.05). CONCLUSION: These result suggest that maternal TFA exposure during gestation can result in oxidative stress and inflammation to brain of offspring in a way. SDG can protect brain of mice of offspring from TFA-induced oxidative injury by up-regulating the expression of mRNA and protein of Nrf2, down-regulating the expression of Keap1, accelerating expression of protein of NQO1 and HO-1 which are antioxidant protein lying downstream of pathway of Nrf2/Keap1.


Subject(s)
Brain , Butylene Glycols , Glucosides , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Trans Fatty Acids , Animals , Female , Mice , Glucosides/pharmacology , Pregnancy , NF-E2-Related Factor 2/metabolism , Brain/metabolism , Brain/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Oxidative Stress/drug effects , Butylene Glycols/pharmacology , Trans Fatty Acids/adverse effects , Prenatal Exposure Delayed Effects/metabolism , Inflammation/metabolism , Inflammation/chemically induced , Maternal Exposure/adverse effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Malondialdehyde/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
13.
BMC Med ; 22(1): 393, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39278907

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Humans , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/epidemiology , Pregnancy , Risk Factors , Female , Environmental Exposure/adverse effects , Maternal Exposure/adverse effects
14.
Sci Total Environ ; 952: 175877, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39226951

ABSTRACT

Infertility has gradually become a global health concern, and evidence suggests that exposure to environmental endocrine-disrupting chemicals (EDCs) represent one of the key causes of infertility. Benzo(a)pyrene (BaP) is a typical EDC that is widespread in the environment. Previous studies have detected BaP in human urine, semen, cervical mucus, oocytes and follicular fluid, resulting in reduced fertility and irreversible reproductive damage. However, the mechanisms underlying the effects of gestational BaP exposure on offspring fertility in male mice have not been fully explored. In this study, pregnant mice were administered BaP at doses of 0, 5, 10 and 20 mg/kg/day via gavage from Days 7.5 to 12.5 of gestation. The results revealed that BaP exposure during pregnancy disrupted the structural integrity of testicular tissue, causing a disorganized arrangement of spermatogenic cells, compromised sperm quality, elevated levels of histone modifications and increased apoptosis in the testicular tissue of F1 male mice. Furthermore, oxidative stress was also increased in the testicular tissue of F1 male mice. BaP activated the AhR/ERα signaling pathway, affected H3K4me3 expression and induced apoptosis in testicular tissue. AhR and Cyp1a1 were overexpressed, and the expression of key molecules in the antioxidant pathway, including Keap1 and Nrf2, was reduced. The combined effects of these molecules led to apoptosis in testicular tissues, damaging and compromising sperm quality. This impairment in testicular cells further contributed to compromised testicular tissues, ultimately impacting the reproductive health of F1 male mice.


Subject(s)
Apoptosis , Benzo(a)pyrene , Oxidative Stress , Animals , Benzo(a)pyrene/toxicity , Male , Female , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Pregnancy , Testis/drug effects , Testis/metabolism , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Germ Cells/drug effects , Spermatozoa/drug effects , Maternal Exposure/adverse effects , Histones/metabolism , Histone Code/drug effects
15.
Pediatr Allergy Immunol ; 35(9): e14230, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39229646

ABSTRACT

Phthalates are ubiquitous in diverse environments and have been linked to a myriad of detrimental health outcomes. However, the association between phthalate exposure and allergic rhinitis (AR) remains unclear. To address this knowledge gap, we conducted a systematic review and meta-analysis to comprehensively evaluate the relationship between phthalate exposure and childhood AR risk. We searched the Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica Database, and PubMed to collect relevant studies and estimated pooled odds ratios (OR) and 95% confidence intervals (CI) for risk estimation. Ultimately, 18 articles, including seven cross-sectional, seven case-control, and four prospective cohort studies, were selected for our systematic review and meta-analysis. Our pooled data revealed a significant association between di-2-ethylhexyl phthalate (DEHP) exposure in children's urine and AR risk (OR = 1.188; 95% CI = 1.016-1.389). Additionally, prenatal exposure to combined phthalates and their metabolites in maternal urine was significantly associated with the risk of childhood AR (OR = 1.041; 95% CI = 1.003-1.081), although specific types of phthalates and their metabolites were not significant. Furthermore, we examined environmental phthalate exposure in household dust and found no significant association with AR risk (OR = 1.021; 95% CI = 0.980-1.065). Our findings underscore the potential hazardous effects of phthalates on childhood AR and offer valuable insights into its pathogenesis and prevention.


Subject(s)
Environmental Exposure , Phthalic Acids , Rhinitis, Allergic , Humans , Rhinitis, Allergic/epidemiology , Phthalic Acids/adverse effects , Phthalic Acids/urine , Child , Environmental Exposure/adverse effects , Female , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Risk , Maternal Exposure/adverse effects , Child, Preschool
16.
BMC Pregnancy Childbirth ; 24(1): 577, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227873

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship between phthalates exposure and estrogen and progesterone levels, as well as their role in late-onset preeclampsia. METHODS: A total of 60 pregnant women who met the inclusion and exclusion criteria were recruited. Based on the diagnosis of preeclampsia, participants were divided into two groups: normotensive pregnant women (n = 30) and pregnant women with late-onset preeclampsia (n = 30). The major metabolites of phthalates (MMP, MEP, MiBP, MBP, MEHP, MEOHP, MEHHP) and sex steroid hormones (estrogen and progesterone) were quantified in urine samples of the participants. RESULTS: No significant differences were observed in the levels of MMP, MEP, MiBP, MBP, MEHP, MEOHP, and MEHHP between women with preeclampsia and normotensive pregnant women (P > 0.05). The urinary estrogen showed a negative correlation with systolic blood pressure (rs= -0.46, P < 0.001) and diastolic blood pressure (rs= -0.47, P < 0.001). Additionally, the urinary estrogen and progesterone levels were lower in women with preeclampsia compared to those in normotensive pregnant women (P < 0.05). After adjusting for confounding factors, we observed a significant association between reduced urinary estrogen levels and an increased risk of preeclampsia (aOR = 0.09, 95%CI = 0.02-0.46). Notably, in our decision tree model, urinary estrogen emerged as the most crucial variable for identifying pregnant women at a high risk of developing preeclampsia. A positive correlation was observed between urinary progesterone and MEHP (rs = 0.36, P < 0.05) in normotensive pregnant women. A negative correlation was observed between urinary estrogen and MEP in pregnant women with preeclampsia (rs= -0.42, P < 0.05). CONCLUSIONS: Phthalates exposure was similar in normotensive pregnant women and those with late-onset preeclampsia within the same region. Pregnant women with preeclampsia had lower levels of estrogen and progesterone in their urine, while maternal urinary estrogen was negatively correlated with the risk of preeclampsia and phthalate metabolites (MEP). TRIAL REGISTRATION: Registration ID in Clinical Trials: NCT04369313; registration date: 30/04/2020.


Subject(s)
Estrogens , Phthalic Acids , Pre-Eclampsia , Progesterone , Humans , Female , Pre-Eclampsia/urine , Pre-Eclampsia/epidemiology , Pregnancy , Case-Control Studies , Phthalic Acids/urine , Phthalic Acids/adverse effects , Adult , Estrogens/urine , Progesterone/urine , Blood Pressure , Maternal Exposure/adverse effects
17.
Ecotoxicol Environ Saf ; 283: 116980, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39226632

ABSTRACT

OBJECTIVE: Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS: Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS: PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION: This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.


Subject(s)
Acetaminophen , Animals , Acetaminophen/toxicity , Female , Pregnancy , Mice , Male , Fetal Development/drug effects , Analgesics, Non-Narcotic/toxicity , Maternal Exposure , Prenatal Exposure Delayed Effects/chemically induced , Fetus/drug effects , Pregnancy Outcome
18.
Environ Health Perspect ; 132(9): 97004, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258902

ABSTRACT

BACKGROUND: Although recent in vitro experimental results have raised the question of whether maternal exposure to per- and polyfluoroalkyl substances (PFAS) may be a potential environmental risk factor for chromosomal abnormalities, epidemiological studies investigating these associations are lacking. OBJECTIVES: This study examined whether prenatal PFAS exposure is associated with a higher prevalence of chromosomal abnormalities among offspring. METHODS: We used data from the Japan Environment and Children's Study, a nationwide birth cohort study, and employed logistic regression models to examine the associations between maternal plasma PFAS concentrations in the first trimester and the diagnosis of chromosomal abnormalities in all births (artificial abortions, miscarriages, stillbirths, and live births) up to 2 years of age. In addition, we examined associations with mixtures of PFAS using multipollutant models. RESULTS: The final sample consisted of 24,724 births with singleton pregnancies, of which 44 confirmed cases of chromosomal abnormalities were identified (prevalence: 17.8/10,000 births). When examined individually, exposure to perfluorononanoic acid (PFNA) and perfluorooctane sulfonic acid (PFOS) showed positive associations with any chromosomal abnormalities with age-adjusted odds ratios of 1.81 (95% CI: 1.26, 2.61) and 2.08 (95% CI: 1.41, 3.07) per doubling in concentration, respectively. These associations remained significant after Bonferroni correction, although they did not reach the adjusted significance threshold in certain sensitivity analyses. Furthermore, the doubling in all PFAS included as a mixture was associated with chromosomal abnormalities, indicating an age-adjusted odds ratio of 2.25 (95% CI: 1.34, 3.80), with PFOS as the predominant contributor, followed by PFNA, perfluoroundecanoic acid (PFUnA), and perfluorooctanoic acid (PFOA). DISCUSSION: The study findings suggested a potential association between maternal exposure to PFAS, particularly PFOS, and chromosomal abnormalities in offspring. However, the results should be interpreted cautiously, because selection bias arising from the recruitment of women in early pregnancy may explain the associations. https://doi.org/10.1289/EHP13617.


Subject(s)
Alkanesulfonic Acids , Chromosome Aberrations , Fluorocarbons , Maternal Exposure , Humans , Female , Japan/epidemiology , Fluorocarbons/blood , Fluorocarbons/toxicity , Pregnancy , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Chromosome Aberrations/chemically induced , Chromosome Aberrations/statistics & numerical data , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity , Adult , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Male , Infant , Infant, Newborn , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Cohort Studies , Child, Preschool , Birth Cohort , Caprylates/toxicity , Caprylates/blood
19.
J Matern Fetal Neonatal Med ; 37(1): 2397721, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39223033

ABSTRACT

OBJECTIVE: To evaluate the association between wildfire exposure in pregnancy and spina bifida risk. METHODS: This retrospective cohort study used the California Office of Statewide Health Planning and Development Linked Birth File with hospital discharge data between 2007 and 2010. The Birth File data were merged with the California Department of Forestry and Fire Protection data of the same year. Spina bifida was identified by its corresponding ICD-9 code listed on the hospital discharge of the newborn. Wildfire exposure was determined based on the zip code of the woman's home address. Pregnancy was considered exposed to wildfire if the mother lived within 15 miles of a wildfire during the pregnancy or within 30 days prior to pregnancy. RESULTS: There were 2,093,185 births and 659 cases of spina bifida between 2007 and 2010. The births were analyzed using multivariable logistic regression models and adjusted for potential confounders. Exposure to wildfire in the first trimester was associated with higher odds of spina bifida (aOR= 1.43 [1.11-1.84], p-value = 0.01). Wildfire exposure 30 days before the last menstrual period and during the second and third trimesters were not associated with higher spina bifida risk. CONCLUSION: Wildfire exposure has shown an increased risk of spina bifida during the early stages of pregnancy.


Subject(s)
Spinal Dysraphism , Wildfires , Humans , Female , Spinal Dysraphism/epidemiology , Pregnancy , Retrospective Studies , Adult , California/epidemiology , Wildfires/statistics & numerical data , Infant, Newborn , Young Adult , Risk Factors , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Residence Characteristics/statistics & numerical data
20.
Environ Int ; 191: 108971, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180775

ABSTRACT

There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.


Subject(s)
Air Pollution , Maternal Exposure , Memory , Particulate Matter , Animals , Mice , Mice, Inbred BALB C , Particulate Matter/toxicity , Male , Female , Sex Characteristics , Neurons/cytology , Brain/pathology , Mitochondria/pathology , Gene Expression , Animals, Newborn , Histone Demethylases/genetics , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL