Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Med Sci Monit ; 24: 348-355, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29343680

ABSTRACT

BACKGROUND The aim of this study was to investigate the expression level of martrilin-3 (MATN3) in patients with gastric adenocarcinoma (GAC) and to investigate the prognostic significance of MATN3. MATERIAL AND METHODS Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data were used to predict the expression and prognostic value of MATN3 mRNA in GAC patients. Seventy-six GAC patients had GAC tissue samples and paired adjacent normal tissue samples collected retrospectively to examine the MATN3 protein expression level by immunohistochemical staining. Furthermore, Kaplan-Meier univariate and Cox multivariate analyses were used to verify the correlation between MATN3 expression and clinicopathological parameters of GAC patients and the prognostic significance of MATN3. RESULTS The GEO and TCGA data predicted that MATN3 mRNA levels were significantly higher in GAC tissue compared to normal tissue (all p<0.05). Further survival analyses showed that GAC patients with high mRNA expression of MATN3 had significantly lower disease-free survival (DFS) and overall survival (OS) time than those with low mRNA expression of MATN3 (all p<0.05). Subsequent immunohistochemical staining results confirmed that the MATN3 protein levels in GAC tissues were highly expressed (p=0.000) compared to normal tissues. In addition, GAC patients with high protein expression of MATN3 had remarkably decreased OS compared to patients with low protein expression of MATN3 (p=0.000). Univariate and multivariate survival analyses revealed that MATN3 high expression could be used as an independent predictor of poor prognosis in GAC patients (all p=0.000). CONCLUSIONS This study confirmed that MATN3 protein was highly expressed in GAC patients, and MATN3 overexpression could be used as an independent predictor of poor prognosis in GAC patients.


Subject(s)
Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Matrilin Proteins/biosynthesis , Matrilin Proteins/genetics , Middle Aged , Prognosis , Proteomics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Retrospective Studies
2.
Braz. j. med. biol. res ; 48(12): 1063-1070, Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-762916

ABSTRACT

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.


Subject(s)
Humans , Chondrocytes/metabolism , Collagen Type II/biosynthesis , Glycosaminoglycans/biosynthesis , Insulin-Like Growth Factor I/metabolism , Matrilin Proteins/biosynthesis , SOX9 Transcription Factor/metabolism , Transfection/methods , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Collagen Type II/analysis , Extracellular Matrix/chemistry , Gene Expression , Glycosaminoglycans/analysis , Insulin-Like Growth Factor I/genetics , Matrilin Proteins/genetics , Primary Cell Culture , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolism , SOX9 Transcription Factor/genetics , Spectrophotometry
3.
Braz J Med Biol Res ; 48(12): 1063-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26445237

ABSTRACT

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.


Subject(s)
Chondrocytes/metabolism , Collagen Type II/biosynthesis , Glycosaminoglycans/biosynthesis , Insulin-Like Growth Factor I/metabolism , Matrilin Proteins/biosynthesis , SOX9 Transcription Factor/metabolism , Transfection/methods , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Collagen Type II/analysis , Extracellular Matrix/chemistry , Gene Expression , Glycosaminoglycans/analysis , Humans , Insulin-Like Growth Factor I/genetics , Matrilin Proteins/genetics , Primary Cell Culture , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , SOX9 Transcription Factor/genetics , Spectrophotometry
4.
PLoS One ; 9(5): e96870, 2014.
Article in English | MEDLINE | ID: mdl-24804684

ABSTRACT

Degenerative disc disease (DDD) of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI), without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP) tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001) were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, interleukin-1ß, interleukin-1 receptor) combined with low expression of anti-catabolic factor (metalloproteinase inhibitor 3) (P<0.0001). This study might contribute to inhibit inflammatory catabolism of cervical discs.


Subject(s)
Disintegrins/biosynthesis , Interleukin-1beta/biosynthesis , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Matrix Metalloproteinase 3/biosynthesis , Animals , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Regulation , Genetic Therapy , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/therapy , Intervertebral Disc Degeneration/pathology , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/pathology , Matrilin Proteins/biosynthesis , Thrombospondins/biosynthesis , Tissue Inhibitor of Metalloproteinase-3/biosynthesis
5.
Biomed Res Int ; 2014: 986127, 2014.
Article in English | MEDLINE | ID: mdl-24741569

ABSTRACT

In this study, we first generated and characterized a polyclonal antibody against unique domain of matrlin-2 and then used this specific antibody to assess the expression pattern of matrilin-2 by immunohistochemistry. We found that marilin-2 is widely distributed in the connective tissues of many mouse tissues including heart, colon, penis, esophagus, lung, kidney, tracheal cartilage, developmental bone, and adult bone. The expression level of matrilin-2 was remarkably increased in the tissues of osteoarthritis developmental articular cartilage, compared to normal healthy tissues. Furthermore, we determined matrilin-2 expression in specific epithelial cells in stomach and ductal epithelial cells of salivary gland. In other tissues, the positive signals were mainly located around cardiac muscle cells and Purkinje fibers in the heart; corpus spongiosum in the penis; submucosa in the colon and esophagus; extracellular matrix of cartilage in the tracheal cartilage; and, glomerulus, the basement membrane of distal convoluted tubule and renal matrix in kidney. These observations indicated that the distribution pattern of matrilin-2 is heterogeneous in each tissue. Matrilin-2 may play an important role in the communication of matrix to matrix and matrix to cells and will be used as a potential biomarker in the early stage of osteoarthritis of articular cartilage.


Subject(s)
Cartilage, Articular/metabolism , Cell Communication , Extracellular Matrix/metabolism , Gene Expression Regulation , Osteoarthritis/metabolism , Animals , Biomarkers/metabolism , Cartilage, Articular/pathology , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Matrilin Proteins/biosynthesis , Matrilin Proteins/genetics , Mice , Osteoarthritis/genetics , Osteoarthritis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...