Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 546-551, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825898

ABSTRACT

Objective: To investigate the clinical and pathological characteristics of primary mucinous gland lesions of the fallopian tubes. Methods: The clinical data, pathomorphological characteristics and immunophenotype of 14 cases of primary mucinous gland lesions of the fallopian tube diagnosed at Obstetrics and Gynecology Hospital of Fudan University from 2015 to 2023 were analyzed retrospectively. In addition, a comprehensive review of relevant literature was conducted. Results: The age of 14 patients ranged from 53 to 83 years, with an average of 65 years. Among them, 13 cases exhibited unilateral involvement while one case showed bilateral presentation. Nine cases were mucinous metaplasia of the fallopian tube, four cases were invasive mucinous adenocarcinoma and one case was mucinous carcinoma in situ. Morphologically, mucinous metaplasia of the fallopian tube was focal, with or without inflammation. The cells of mucinous adenocarcinoma or mucinous carcinoma in situ exhibited characteristics indicative of gastrointestinal differentiation. Immunohistochemical analysis revealed diffuse positive expression of CK7, and negative expression of SATB2. CDX2 demonstrated positive staining in two cases. One case exhibited diffuse and strongly positive mutant expression of p53, whereas the remaining cases displayed wild-type expression. MUC6 showed diffuse or focally positive staining in mucinous gland lesions characterized by gastric differentiation. Some cases of mucinous adenocarcinoma of fallopian tube were subject to AB-PAS staining, resulting in red to purple cytoplasmic staining. Conclusions: Primary mucinous lesions of the fallopian tube are exceedingly uncommon. All cases of mucinous adenocarcinoma of fallopian tubes in this study exhibit the morphology and immunohistochemical characteristics of gastrointestinal differentiation. Mucinous metaplasia of the fallopian tube is a benign lesion of incidental finding, which is closely related to inflammation or gastric differentiation. Mucinous lesions of cervix, ovary and digestive tract are excluded in all patients, confirming the independent existence of mucinous lesions within fallopian tubes.


Subject(s)
Adenocarcinoma, Mucinous , Fallopian Tube Neoplasms , Fallopian Tubes , Metaplasia , Tumor Suppressor Protein p53 , Humans , Female , Fallopian Tube Neoplasms/pathology , Fallopian Tube Neoplasms/metabolism , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/metabolism , Aged , Middle Aged , Retrospective Studies , Fallopian Tubes/pathology , Aged, 80 and over , Tumor Suppressor Protein p53/metabolism , Metaplasia/pathology , Keratin-7/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Mucin-6/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma in Situ/pathology , Immunohistochemistry
3.
Sci Rep ; 14(1): 11243, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755179

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Subject(s)
Matrix Attachment Region Binding Proteins , MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Stromal Interaction Molecule 1 , T-Lymphocytes, Regulatory , Th17 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Humans , Animals , Mice , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/metabolism , Female , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Adult , Middle Aged , Gene Expression Regulation , Disease Models, Animal
4.
Cell Rep ; 43(5): 114231, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733588

ABSTRACT

Mutations in the SRCAP gene are among the genetic alterations identified in autism spectrum disorders (ASD). However, the pathogenic mechanisms remain unclear. In this study, we demonstrate that Srcap+/- mice manifest deficits in social novelty response, as well as increased repetitive behaviors, anxiety, and impairments in learning and memory. Notably, a reduction in parvalbumin-positive neurons is observed in the retrosplenial cortex (RSC) and dentate gyrus (DG) of these mice. Through RNA sequencing, we identify dysregulation in 27 ASD-related genes in Srcap+/- mice. Specifically, we find that Srcap regulates expression of Satb2 via H2A.z in the promoter. Therapeutic intervention via retro-orbital injection of adeno-associated virus (AAV)-Satb2 in neonatal Srcap+/- mice leads to amelioration of the neurodevelopmental and ASD-like abnormalities. Furthermore, the expression of Satb2 only in the RSC of adolescent mice rectifies social novelty impairments. These results underscore the pivotal role of Srcap in neurodevelopment, by regulating Satb2, providing valuable insights for the pathophysiology of ASD.


Subject(s)
Haploinsufficiency , Matrix Attachment Region Binding Proteins , Transcription Factors , Animals , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Behavior, Animal , Autistic Disorder/genetics , Autistic Disorder/metabolism , Male , Social Behavior , Mice, Inbred C57BL , Neurons/metabolism
5.
Proc Natl Acad Sci U S A ; 121(16): e2316244121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588419

ABSTRACT

Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.


Subject(s)
Drosophila Proteins , Matrix Attachment Region Binding Proteins , Animals , Humans , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Drosophila/genetics , Retina/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Drosophila melanogaster/metabolism , Body Patterning/genetics
6.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604171

ABSTRACT

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Subject(s)
Long Interspersed Nucleotide Elements , Matrix Attachment Region Binding Proteins , RNA Polymerase II , Receptors, Estrogen , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Long Interspersed Nucleotide Elements/genetics , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix-Associated Proteins/genetics , Gene Expression Regulation , Protein Binding , HEK293 Cells , Genome, Human
7.
Nat Commun ; 15(1): 3595, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678016

ABSTRACT

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.


Subject(s)
Chromatin , Colon , Hepatocyte Nuclear Factor 4 , Intestine, Small , Matrix Attachment Region Binding Proteins , Animals , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Intestine, Small/metabolism , Colon/metabolism , Mice , Chromatin/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Male , Cell Plasticity/genetics , Cell Lineage , Mice, Knockout
8.
Sci Adv ; 10(13): eadj9600, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536932

ABSTRACT

Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.


Subject(s)
Matrix Attachment Region Binding Proteins , Mitochondrial Diseases , Neoplasms , Humans , Mice , Animals , T-Lymphocytes, Regulatory , Ketoglutaric Acids/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Cytokines/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
9.
Aging Cell ; 23(4): e14077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38303548

ABSTRACT

Idiopathic Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilize human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.


Subject(s)
Matrix Attachment Region Binding Proteins , MicroRNAs , Parkinson Disease , Humans , Mice , Animals , Dopaminergic Neurons/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Glucosylceramides/metabolism , Gliosis , Neuroinflammatory Diseases , Parkinson Disease/genetics , Parkinson Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Transcription Factors/metabolism , Phenotype
10.
Cancer Biol Ther ; 25(1): 2320307, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38385627

ABSTRACT

Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of ß-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and ß-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.


Subject(s)
Colorectal Neoplasms , Matrix Attachment Region Binding Proteins , Humans , beta Catenin/metabolism , Colorectal Neoplasms/pathology , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Retrospective Studies , Prognosis , Transcription Factors/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Wnt Signaling Pathway
11.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38244545

ABSTRACT

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Subject(s)
Matrix Attachment Region Binding Proteins , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Neurons/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Chromatin/metabolism , Genome , Cognition , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
12.
Thorac Cancer ; 15(7): 538-549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38268309

ABSTRACT

BACKGROUND: To explore the role and mechanism of triptolide in regulating esophageal squamous cell carcinoma (ESCC) progression by mediating the circular RNA (circRNA)-related pathway. METHODS: The expression levels of circNOX4, miR-153-3p and special AT-rich sequence binding protein-1 (SATB1) were measured by qRT-PCR. Cell proliferation was confirmed by cell counting kit-8 assay and colony formation assay. Flow cytometry was employed to measure cell apoptosis and cell cycle process. Moreover, cell migration and invasion were detected using transwell assay. The protein levels of epithelial-mesenchymal transformation markers and SATB1 were determined by western blot analysis. Furthermore, dual-luciferase reporter assay and RIP assay were performed to confirm the interaction between miR-153-3p and circNOX4 or SATB1. Xenograft tumor models were built to verify the effects of triptolide and circNOX4 on ESCC tumor growth. RESULTS: CircNOX4 was highly expressed in ESCC tissues and cells, and its expression could be reduced by triptolide. Triptolide could inhibit ESCC proliferation, cell cycle process, migration, invasion, EMT process, and promote apoptosis, while these effects were reversed by circNOX4 overexpression. MiR-153-3p could be sponged by circNOX4, and the promotion effect of circNOX4 on the progression of triptolide-treated ESCC cells was abolished by miR-153-3p overexpression. SATB1 was a target of miR-153-3p. Also, SATB1 knockdown reversed the enhancing effect of miR-153-3p inhibitor on the progression of triptolide-treated ESCC cells. Triptolide reduced ESCC tumor growth by regulating the circNOX4/miR-153-3p/SATB1 axis. CONCLUSION: Triptolide could hinder ESCC progression, which was mainly achieved by regulating the circNOX4/miR-153-3p/SATB1 axis.


Subject(s)
Diterpenes , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Matrix Attachment Region Binding Proteins , MicroRNAs , Phenanthrenes , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Matrix Attachment Region Binding Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Signal Transduction , Epoxy Compounds
13.
Med Mol Morphol ; 57(1): 1-10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37583001

ABSTRACT

The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.


Subject(s)
Adenocarcinoma , Brain Neoplasms , Colorectal Neoplasms , Matrix Attachment Region Binding Proteins , Neoplastic Syndromes, Hereditary , Protein Deficiency , Humans , Proto-Oncogene Proteins B-raf/genetics , DNA Mismatch Repair/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/genetics , Colorectal Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
14.
J Cutan Pathol ; 51(3): 232-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37932931

ABSTRACT

BACKGROUND: Diagnosis of early mycosis fungoides (eMF) is challenging and often delayed as many of its clinical and histopathologic features may mimic various benign inflammatory dermatoses (BIDs). The products of the thymocyte selection-associated high mobility group box (TOX), twist family BHLH transcription factor 1 (TWIST1), signal transducer and activator of transcription 4 (STAT4), and special AT-rich sequence-binding protein 1 (SATB1) genes function as transcription factors and are involved in the pathogenesis of MF. OBJECTIVES: We aim to determine the diagnostic value of TOX, TWIST1, STAT4, and SATB1 protein expressions in eMF. METHODS: This non-randomized, controlled, prospective analytic study was conducted by performing immunohistochemistry staining with TOX, TWIST1, STAT4, and SATB1 polyclonal antibodies in lesional skin biopsies of eMF and BID patients. Nuclear staining of lymphocytes was compared between eMF and BIDs, and the capacity of these antibodies to predict eMF was determined. RESULTS: Immunostainings with anti-TWIST1 showed an increase in protein expression (p = 0.003) and showed a decrease with anti-SATB1 antibodies in eMF compared to BIDs (p = 0.005) while anti-TOX and anti-STAT4 antibodies did not exhibit significant differences (p = 0.384; p = 0.150). Receiver operating characteristic analysis showed that immunohistochemical evaluations of TWIST1 and SATB1 protein expressions can differentiate eMF (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.605-0.851, p = 0.002; AUC: 0.686, 95% CI: 0.565-0.807, p = 0.013). CONCLUSIONS: TWIST1 and SATB1 are potential diagnostic markers for the histologic diagnosis of eMF.


Subject(s)
Matrix Attachment Region Binding Proteins , Mycosis Fungoides , Skin Neoplasms , Humans , Matrix Attachment Region Binding Proteins/metabolism , Mycosis Fungoides/pathology , Nuclear Proteins/metabolism , Prospective Studies , Skin Neoplasms/pathology , STAT4 Transcription Factor/metabolism , Twist-Related Protein 1/metabolism
15.
Cytokine ; 175: 156444, 2024 03.
Article in English | MEDLINE | ID: mdl-38150791

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck epidermis. Accumulating long non-coding RNAs (lncRNAs) have been proven to be involved in the occurrence and development of HNSCC. LncRNA long intergenic non-protein coding RNA 491 (LINC00491) has been confirmed to regulate the progression of some cancers. In our study, we aimed to explore the potential biological function of LINC00491 and expound the regulatory mechanism by which LINC00491 affects the progression of HNSCC. RT-qPCR was utilized to analyze the expression of LINC00491 in HNSCC cell lines and the normal cell line. Functionally, we carried out a series of assays to measure cell proliferation, apoptosis, migration and invasion, such as EdU assay, colony formation, wound healing and western blot assays. Also, mechanism assays including RNA pull down and RIP were also implemented to investigate the interaction of LINC00491 and RNAs. As a result, we discovered that LINC00491 was highly expressed in HNSCC cells. In addition, LINC00491 depletion suppressed cell proliferation, migration and EMT process. Furthermore, we discovered that LINC00491 could bind to miR-508-3p. MiR-508-3p overexpression can restrain HNSCC cell growth. Importantly, miR-508-3p can target SATB homeobox 1 (SATB1) in HNSCC cells. Further, Wnt signaling pathway was proved to be activated by LINC00491 through SATB1 in HNSCC cells. In a word, LINC00491 accelerated HNSCC progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway.


Subject(s)
Head and Neck Neoplasms , Matrix Attachment Region Binding Proteins , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway/genetics
16.
Cell Mol Immunol ; 20(10): 1114-1126, 2023 10.
Article in English | MEDLINE | ID: mdl-37544964

ABSTRACT

SATB1 (Special A-T rich Binding protein 1) is a cell type-specific factor that regulates the genetic network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, VDJ recombination, development and maturation. Considering that its expression varies during B-cell differentiation, the involvement of SATB1 needs to be clarified in this lineage. Using a KO mouse model in which SATB1 was deleted from the pro-B-cell stage, we examined the consequences of SATB1 deletion in naive and activated B-cell subsets. Our model indicates first, unlike its essential function in T cells, that SATB1 is dispensable for B-cell development and the establishment of a broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and activated cells, respectively. Third, our study indicates that the negative regulatory function of SATB1 in B cells extends to the germinal center response, in which this factor limits somatic hypermutation of Ig genes.


Subject(s)
Matrix Attachment Region Binding Proteins , Animals , Mice , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Gene Regulatory Networks , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Chromatin/metabolism
17.
Nat Rev Immunol ; 23(12): 842-856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37336954

ABSTRACT

Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.


Subject(s)
Matrix Attachment Region Binding Proteins , T-Lymphocytes, Regulatory , Humans , Gene Expression Regulation , Cell Differentiation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
18.
Biol Open ; 12(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37283223

ABSTRACT

The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.


Subject(s)
Matrix Attachment Region Binding Proteins , RNA, Long Noncoding , Humans , Animals , Mice , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , RNA, Long Noncoding/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Mice, Knockout , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin , RNA-Binding Proteins/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
19.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37193606

ABSTRACT

The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.


Subject(s)
Matrix Attachment Region Binding Proteins , Animals , Mice , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Immunity, Innate , Lymphocytes , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation
20.
Pathol Int ; 73(6): 246-254, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37036163

ABSTRACT

Sessile serrated lesions (SSLs) and microvesicular hyperplastic polyps (MVHPs) are colorectal lesions displaying gastric differentiation. Griffonia simplicifolia-II (GS-II) is a lectin specific to terminal α/ßGlcNAc residues. Here, we assessed GS-II binding and performed immunostaining for HIK1083 (specific to terminal αGlcNAc residues), MUC5AC, MUC6, and special AT-rich sequence binding protein 2 (SATB2) in SSLs, MVHPs, and tubular adenomas (TAs). We observed MUC5AC positivity in 28 of 30 SSLs, but in only three of 23 TAs. Moreover, 24 of 30 SSLs were MUC6-positive, while none of the 23 TAs were MUC6-positive. None of the 30 SSLs or 23 TAs showed HIK1083 positivity. All 30 SSLs and 26 MVHPs were GS-II-positive, while only seven of 23 were in TAs. GS-II staining was mainly distributed in the Golgi region, but SSLs and MVHPs showed goblet cell distribution, in 20 of 30 and 19 of 26 cases, respectively. All SSLs, MVHPs, and TAs were SATB2-positive, but 21 of 30 SSLs and 12 of 26 MVHPs showed decreased staining intensity relative to adjacent mucosa, a decrease seen in only two of 23 in TAs. These results indicate overall that increased terminal ßGlcNAc and decreased SATB2 expression are characteristics of SSLs and MVHPs.


Subject(s)
Adenoma , Colonic Polyps , Colorectal Neoplasms , Matrix Attachment Region Binding Proteins , Humans , Colonic Polyps/pathology , Griffonia/metabolism , Down-Regulation , Adenoma/pathology , Goblet Cells/pathology , Colorectal Neoplasms/pathology , Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...