Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.292
Filter
1.
PLoS One ; 19(5): e0302906, 2024.
Article in English | MEDLINE | ID: mdl-38718039

ABSTRACT

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Subject(s)
Cartilage, Articular , Chondrocytes , Interleukin-1beta , NF-kappa B , Osteoarthritis , Plant Extracts , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley , Down-Regulation/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Collagen Type II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Fruit/chemistry , Aggrecans/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Cells, Cultured , Male , MAP Kinase Signaling System/drug effects
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 562-569, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752242

ABSTRACT

Objective: To explore the early effectiveness and influence on cartilage of local injection of multimodal drug cocktail (MDC) during anterior cruciate ligament reconstruction (ACLR). Methods: Between February 2022 and August 2023, patients undergone arthroscopic ACLR using autologous hamstring tendons were selected as the study subjects. Among them, 90 patients met the selection criteria and were randomly divided into 3 groups ( n=30) according to the different injection drugs after ligament reconstruction. There was no significant difference in baseline data such as gender, age, body mass index, surgical side, disease duration, preoperative thigh circumference, and preoperative levels of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-1, matrix metalloproteinase 3 (MMP-3), MMP-13, and aggrecan (ACAN) in synovial fluid between groups ( P>0.05). After the ligament reconstruction during operation, corresponding MDC (consisting of ropivacaine, tranexamic acid, and betamethasone in group A, and ropivacaine, betamethasone, and saline in group B) or saline (group C) were injected into the joint and tendon site, respectively. The length of hospital stay, postoperative tramadol injection volume, incidence of complications, degree of knee joint swelling and range of motion, visual analogue scale (VAS) score, International Knee Documentation Committee (IKDC) score, Lyshlom score, and Hospital for Special Surgery (HSS) score were recorded and compared between groups. The T2 * values in different cartilage regions were detected by MRI examination and the levels of TNF-α, IL-6, IL-1, MMP-3, MMP-13, and ACAN in synovial fluid were detected by ELISA method. Results: The patients in group A, B, and C were followed up (12.53±3.24), (13.14±2.87), and (12.82±3.32) months, respectively. All incisions healed by first intention. Compared with group C, group A and group B had shorter length of hospital stay, less tramadol injection volume, and lower incidence of complications, showing significant differences ( P<0.05); there was no significant difference between group A and group B ( P>0.05). The degree of knee swelling in group A was significantly less than that in group B and group C ( P<0.05), but there was no significant difference between group B and group C ( P>0.05). At 3, 6, 12, 24, and 48 hours after operation, VAS scores of group A and group B were significantly lower than those of group C ( P<0.05); at 72 hours after operation, there was no significant difference among the three groups ( P>0.05). At 3 days, 14 days, and 1 month after operation, the range of motion of knee joint in group A were significantly better than those in group C ( P<0.05), and there was no significant difference between the other groups ( P>0.05). At 1 month after operation, the IKDC score of group A and group B was significantly higher than that of group C ( P<0.05); there was no significant difference among the three groups at other time points ( P>0.05). There was no significant difference in Lyshlom score and HSS score among the three groups at each time point ( P>0.05). At 14 days after operation, the levels of IL-1 and IL-6 in the synovial fluid in groups A and B were significantly lower than those in group C ( P<0.05). There was no significant difference in the levels of TNF-α, MMP-3, MMP-13, and ACAN between groups A and B ( P>0.05). At 1 month after operation, there was no significant difference in the above indicators among the three groups ( P>0.05). At 3, 6, and 12 months after operation, there was no significant difference in the T2 * values of different cartilage regions among the three groups ( P>0.05). Conclusion: Injecting MDC (ropivacaine, tranexamic acid, betamethasone) into the joint and tendon site during ACLR can achieve good early effectiveness without significant impact on cartilage.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Betamethasone , Ropivacaine , Humans , Anterior Cruciate Ligament Reconstruction/methods , Ropivacaine/administration & dosage , Male , Betamethasone/administration & dosage , Female , Adult , Matrix Metalloproteinase 3/metabolism , Anesthetics, Local/administration & dosage , Arthroscopy , Anterior Cruciate Ligament Injuries/surgery , Aggrecans/metabolism , Matrix Metalloproteinase 13/metabolism , Anterior Cruciate Ligament/surgery , Treatment Outcome , Tendons/transplantation , Cartilage/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791285

ABSTRACT

Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of MSC-derived EVs has been shown in several studies, but in recent years, there have been many efforts to functionalize EVs to give them more potent therapeutic effects. Strategies for functionalizing EVs include endogenous and exogenous methods. In this study, human umbilical cord MSC (UCMSC)-derived EVs were selected for optimum OA treatments with expectation via bioinformatics analysis based on antibody array. And we created a novel nanovesicle system called the IGF-si-EV, which has the properties of both cartilage regeneration and long-term retention in the lesion site, attaching positively charged insulin-like growth factor-1 (IGF-1) to the surface of the UCMSC-derived Evs carrying siRNA, which inhibits MMP13. The downregulation of inflammation-related cytokine (MMP13, NF-kB, and IL-6) and the upregulation of cartilage-regeneration-related factors (Col2, Acan) were achieved with IGF-si-EV. Moreover, the ability of IGF-si-EV to remain in the lesion site for a long time has been proven through an ex vivo system. Collectively, the final constructed IGF-si-EV can be proposed as an effective OA treatment through its successful MMP13 inhibition, chondroprotective effect, and cartilage adhesion ability. We also believe that this EV-based nanoparticle-manufacturing technology can be applied as a platform technology for various diseases.


Subject(s)
Extracellular Vesicles , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Osteoarthritis , RNA, Small Interfering , Insulin-Like Growth Factor I/metabolism , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteoarthritis/therapy , Osteoarthritis/metabolism , RNA, Small Interfering/genetics , Animals , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
4.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751164

ABSTRACT

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Subject(s)
Extracellular Vesicles , Fibroblasts , Mesenchymal Stem Cells , Single-Cell Analysis , Umbilical Cord , Wound Healing , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Mice , Fibroblasts/metabolism , Sequence Analysis, RNA , Cells, Cultured , Cell Movement , Matrix Metalloproteinase 13/metabolism , Fetus
5.
PeerJ ; 12: e17032, 2024.
Article in English | MEDLINE | ID: mdl-38770093

ABSTRACT

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Subject(s)
Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
6.
J Control Release ; 369: 493-505, 2024 May.
Article in English | MEDLINE | ID: mdl-38582335

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative cartilage disease, but no effective treatment is currently available to ameliorate the dysregulation of cartilage catabolism. Cartilage degeneration is closely related to the change in the physiology of chondrocytes: for example, chondrocytes of the OA patients overexpress matrix metallopeptidase 13 (MMP13), a.k.a. collagenase 3, which damages the extracellular matrix (ECM) of the cartilage and deteriorate the disease progression. Inhibiting MMP13 has shown to be beneficial for OA treatments, but delivering therapeutics to the chondrocytes embedded in the dense cartilage is a challenge. Here, we engineered the exosome surface with the cartilage affinity peptide (CAP) through lipid insertion to give chondrocyte-targeting exosomes, CAP-Exo, which was then loaded with siRNA against MMP13 (siMMP13) in the interior to give CAP-Exo/siMMP13. Intra-articular administration of CAP-Exo/siMMP13 reduced the MMP13 level and increased collagen COL2A1 and proteoglycan in cartilage in a rat model of anterior cruciate ligament transection (ACLT)-induced OA. Proteomic analysis showed that CAP-Exo/siMMP13 treatment restored the altered protein levels in the IL-1ß-treated chondrocytes. Taken together, a facile exosome engineering method enabled targeted delivery of siRNA to chondrocytes and chondrocyte-specific silencing of MMP13 to attenuate cartilage degeneration.


Subject(s)
Chondrocytes , Exosomes , Matrix Metalloproteinase 13 , Osteoarthritis , RNA, Small Interfering , Rats, Sprague-Dawley , Regeneration , Exosomes/metabolism , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , RNA, Small Interfering/administration & dosage , Osteoarthritis/therapy , Male , Cartilage, Articular/metabolism , Peptides/administration & dosage , Peptides/chemistry , Cells, Cultured , Humans , Rats , Cartilage/metabolism
7.
Curr Med Sci ; 44(2): 369-379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619683

ABSTRACT

OBJECTIVE: Matrix metalloproteinase 13 (MMP13) is an extracellular matrix protease that affects the progression of atherosclerotic plaques and arterial thrombi by degrading collagens, modifying protein structures and regulating inflammatory responses, but its role in deep vein thrombosis (DVT) has not been determined. The purpose of this study was to investigate the potential effects of MMP13 and MMP13-related genes on the formation of DVT. METHODS: We altered the expression level of MMP13 in vivo and conducted a transcriptome study to examine the expression and relationship between MMP13 and MMP13-related genes in a mouse model of DVT. After screening genes possibly related to MMP13 in DVT mice, the expression levels of candidate genes in human umbilical vein endothelial cells (HUVECs) and the venous wall were evaluated. The effect of MMP13 on platelet aggregation in HUVECs was investigated in vitro. RESULTS: Among the differentially expressed genes, interleukin 1 beta, podoplanin (Pdpn), and factor VIII von Willebrand factor (F8VWF) were selected for analysis in mice. When MMP13 was inhibited, the expression level of PDPN decreased significantly in vitro. In HUVECs, overexpression of MMP13 led to an increase in the expression level of PDPN and induced platelet aggregation, while transfection of PDPN-siRNA weakened the ability of MMP13 to increase platelet aggregation. CONCLUSIONS: Inhibiting the expression of MMP13 could reduce the burden of DVT in mice. The mechanism involves downregulating the expression of Pdpn through MMP13, which could provide a novel gene target for DVT diagnosis and treatment.


Subject(s)
Venous Thrombosis , Animals , Humans , Mice , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/metabolism , Matrix Metalloproteinase 13/genetics , Platelet Aggregation , Venous Thrombosis/genetics
8.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640717

ABSTRACT

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Subject(s)
Apoptosis , Cellular Senescence , Interleukin-1beta , Intervertebral Disc Degeneration , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects , Cellular Senescence/drug effects , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Rats , Phosphatidylinositol 3-Kinases/metabolism , Male , Interleukin-1beta/metabolism , Integrin alpha2/metabolism , Integrin alpha2/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Disease Models, Animal , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
9.
Sci Rep ; 14(1): 8101, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582868

ABSTRACT

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Rats , Male , Animals , Hedgehog Proteins , MicroRNAs/genetics , MicroRNAs/therapeutic use , Rats, Sprague-Dawley , Matrix Metalloproteinase 13/genetics , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Chondrocytes , Injections, Intra-Articular , Inflammation , Disease Models, Animal
10.
Eur J Med Res ; 29(1): 225, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594750

ABSTRACT

BACKGROUND: Managing polytrauma victims poses a significant challenge to clinicians since applying the same therapy to patients with similar injury patterns may result in different outcomes. Using serum biomarkers hopefully allows for treating each multiple injured in the best possible individual way. Since matrix metalloproteinases (MMPs) play pivotal roles in various physiological processes, they might be a reliable tool in polytrauma care. METHODS: We evaluated 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and stayed at the intensive care unit for at least one night. We determined their MMP3, MMP8, MMP9, MMP10, MMP12, and MMP13 serum levels at admission (day 0) and on days 1, 3, 5, 7, and 10. RESULTS: Median MMP8, MMP9, and MMP12 levels immediately rose after the polytrauma occurred; however, they significantly decreased from admission to day 1 and significantly increased from day 1 to day 10, showing similar time trajectories and (very) strong correlations between each two of the three enzyme levels assessed at the same measurement point. For a two-day lag, autocorrelations were significant for MMP8 (- 0.512) and MMP9 (- 0.302) and for cross-correlations between MMP8 and MMP9 (- 0.439), MMP8 and MMP12 (- 0.416), and MMP9 and MMP12 (- 0.307). Moreover, median MMP3, MMP10, and MMP13 levels significantly increased from admission to day 3 and significantly decreased from day 3 to day 10, showing similar time trajectories and an (almost) strong association between every 2 levels until day 7. Significant cross-correlations were detected between MMP3 and MMP10 (0.414) and MMP13 and MMP10 (0.362). Finally, the MMP10 day 0 level was identified as a predictor for in-hospital mortality. Any increase of the MMP10 level by 200 pg/mL decreased the odds of dying by 28.5%. CONCLUSIONS: The time trajectories of the highly varying individual MMP levels elucidate the involvement of these enzymes in the endogenous defense response following polytrauma. Similar time courses of MMP levels might indicate similar injury causes, whereas lead-lag effects reveal causative relations between several enzyme pairs. Finally, MMP10 abundantly released into circulation after polytrauma might have a protective effect against dying.


Subject(s)
Matrix Metalloproteinase 8 , Multiple Trauma , Humans , Adult , Matrix Metalloproteinase 3 , Matrix Metalloproteinase 10 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 13 , Pilot Projects , Matrix Metalloproteinase 12
11.
J Orthop Surg Res ; 19(1): 158, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429844

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a joint disease characterized by inflammation and progressive cartilage degradation. Chondrocyte apoptosis is the most common pathological feature of OA. Interleukin-1ß (IL-1ß), a major inflammatory cytokine that promotes cartilage degradation in OA, often stimulates primary human chondrocytes in vitro to establish an in vitro OA model. Moreover, IL-1ß is involved in OA pathogenesis by stimulating the phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinases pathways. The G-protein-coupled receptor, cc chemokine receptor 10 (CCR10), plays a vital role in the occurrence and development of various malignant tumors. However, the mechanism underlying the role of CCR10 in the pathogenesis of OA remains unclear. We aimed to evaluate the protective effect of CCR10 on IL-1ß-stimulated CHON-001 cells and elucidate the underlying mechanism. METHODS: The CHON-001 cells were transfected with a control small interfering RNA (siRNA) or CCR10-siRNA for 24 h, and stimulated with 10 ng/mL IL-1ß for 12 h to construct an OA model in vitro. The levels of CCR10, cleaved-caspase-3, MMP-3, MMP-13, Collagen II, Aggrecan, p-PI3K, PI3K, p-Akt, Akt, phosphorylated-mammalian target of rapamycin (p-mTOR), and mTOR were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Viability, cytotoxicity, and apoptosis of CHON-001 cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay (LDH), and flow cytometry analysis, respectively. Inflammatory cytokines (TNF-α, IL-6, and IL-8) were assessed using enzyme-linked immunosorbent assay. RESULTS: Level of CCR10 was substantially higher in the IL-1ß-stimulated CHON-001 cells than that in the control group, whereas CCR10 was down-regulated in the CCR10-siRNA transfected CHON-001 cells compared to that in the control-siRNA group. Notably, CCR10 inhibition alleviated IL-1ß-induced inflammatory injury in the CHON-001 cells, as verified by enhanced cell viability, inhibited LDH release, reduced apoptotic cells, and cleaved-caspase-3 expression. Meanwhile, IL-1ß induced the release of tumor necrosis factor alpha, IL-6, and IL-8, increase of MMP-3 and MMP-13, and decrease of Collagen II and Aggrecan in the CHON-001 cells, which were reversed by CCR10-siRNA. However, these effects were reversed upon PI3K agonist 740Y-P treatment. Further, IL-1ß-induced PI3K/Akt/mTOR signaling pathway activation was inhibited by CCR10-siRNA, which was increased by 740Y-P treatment. CONCLUSION: Inhibition of CCR10 alleviates IL-1ß-induced chondrocytes injury via PI3K/Akt/mTOR pathway inhibition, suggesting that CCR10 might be a promising target for novel OA therapeutic strategies.


Subject(s)
Osteoarthritis , Peptide Fragments , Phosphatidylinositol 3-Kinase , Receptors, Platelet-Derived Growth Factor , Humans , Aggrecans , Caspase 3 , Collagen , Cytokines , Interleukin-6 , Interleukin-8 , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3 , Osteoarthritis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CCR10 , RNA, Small Interfering , TOR Serine-Threonine Kinases
12.
Stem Cell Res Ther ; 15(1): 75, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475906

ABSTRACT

BACKGROUND: Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS: The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-ß and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-ß and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS: Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-ß and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-ß and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION: MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Male , Rats , Animals , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Insulin-Like Growth Factor I/metabolism , Matrix Metalloproteinase 13 , Aggrecans/metabolism , Rats, Sprague-Dawley , Diskectomy , Mesenchymal Stem Cells/metabolism , Collagen Type I/metabolism , Transforming Growth Factor beta/metabolism
13.
Osteoarthritis Cartilage ; 32(6): 690-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442768

ABSTRACT

OBJECTIVE: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS: Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION: The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Tibia , Animals , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Sheep , Tibia/diagnostic imaging , Tibia/pathology , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Female , X-Ray Microtomography , Osteotomy , Femur/diagnostic imaging , Femur/pathology , Matrix Metalloproteinase 13/metabolism , Meniscectomy , Collagen Type II/metabolism , Menisci, Tibial/surgery , Menisci, Tibial/diagnostic imaging , Arthritis, Experimental/pathology , Arthritis, Experimental/diagnostic imaging , Disease Models, Animal , ADAMTS5 Protein/metabolism
14.
J Innate Immun ; 16(1): 203-215, 2024.
Article in English | MEDLINE | ID: mdl-38471488

ABSTRACT

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Subject(s)
Airway Remodeling , Antimicrobial Cationic Peptides , Asthma , Bronchi , Cathelicidins , Epithelial Cells , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 9 , Tumor Necrosis Factor-alpha , Humans , Antimicrobial Cationic Peptides/metabolism , Asthma/immunology , Asthma/metabolism , Cells, Cultured , Epithelial Cells/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Proteomics , Respiratory Mucosa/immunology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
15.
Rom J Morphol Embryol ; 65(1): 45-52, 2024.
Article in English | MEDLINE | ID: mdl-38527983

ABSTRACT

BACKGROUND: Matrix metalloproteinase (MMP)1, MMP9, MMP11, and MMP13 are overexpressed in malignant melanoma (MM), being associated with tumor invasive phase, metastases, and more aggressive neoplastic phenotypes. AIM: The main objective of the current study was to correlate the expression of the MMPs with the evolution of MM toward distant metastasis. PATIENTS, MATERIALS AND METHODS: We designed a retrospective cohort study, including 13 patients with metastatic MM. Data concerning age, sex, localization of the primary lesion and metastasis, and histological and immunohistochemical features (intensity of expression and percent of positive cells for MMPs) were statistically processed. RESULTS: The time between the diagnosis of primitive melanoma and the diagnosis of metastasis ranged between 0 and 73 months, with a mean value of 18.3 months. The metastases rich in MMP1- and MMP9-positive cells occurred earlier than the metastases with low levels of positive cells. The mean period until metastasis was shorter for the MMP1-expressing tumors than the ones without MMP1 expression. MMP13 expression in the tumor and its metastasis was significantly linked with the time until the metastasis occurrence. CONCLUSIONS: This study emphasizes the roles of MMP1, MMP9, and MMP13 in the process of metastasis in melanoma and the opportunity to use them as therapeutic targets and surveillance molecules.


Subject(s)
Matrix Metalloproteinase 13 , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 9 , Melanoma , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 11/genetics , Matrix Metalloproteinase 11/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Melanoma/genetics , Melanoma/metabolism , Retrospective Studies
16.
Int J Rheum Dis ; 27(3): e15123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38514927

ABSTRACT

AIM: To investigate the linkage of matrix metalloproteinase (MMP) gene polymorphisms with the pathogenesis of knee osteoarthritis (OA). METHODS: This meta-analysis study systematically retrieved relevant studies from PubMed, Embase, the Cochrane Central, Wanfang Data, CNKI, and SinoMed up to November 2020. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the association between MMP gene polymorphisms and OA. RESULTS: A total of nine case-control studies comprising 1719 knee OA patients and 1904 controls were included in this meta-analysis. The results revealed that MMP-1-1607 (rs1799750) 1G/2G polymorphism was not significantly associated with knee OA risk in four genetic models (OR (95% CI): allele model: 0.89 (0.57, 1.40), p = .615); dominant mode: 0.82 (0.47, 1.44), p = .486; recessive model: 0.88 (0.49, 1.57), p = .659; homozygote model: 0.79 (0.34, 1.82), p = .576. The association was significant for dominant model of MMP-3 C/T: 1.54 (1.10-2.15), p = .013, especially in Asian ethnicity (1.63 (1.11, 2.39), p = .013). Variants of MMP-13 C/T polymorphism were associated with increased risk of knee OA development based on dominant model: 1.56 (1.19, 2.06), p = .001 and homozygote model: 2.12 (1.44, 3.13), p < .001, and there were significant associations between MMP-13 C/T polymorphism and knee OA risk in Asian ethnicity under different genetic models (all p > .05). CONCLUSIONS: Present evidence suggested that the gene polymorphisms of MMP-1-1607 1G/2G may not be associated with the risk of OA. But, the dominant model of MMP-3 and MMP-13 polymorphisms in Asian ethnicity was significantly correlated with knee OA.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/genetics , Genetic Predisposition to Disease , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Genotype , Polymorphism, Single Nucleotide , Case-Control Studies
17.
Mediators Inflamm ; 2024: 3188216, 2024.
Article in English | MEDLINE | ID: mdl-38385005

ABSTRACT

Background: Rheumatoid arthritis (RA) remains one of the most prevalent chronic joint diseases. However, due to the heterogeneity among RA patients, there are still no robust diagnostic and therapeutic biomarkers for the diagnosis and treatment of RA. Methods: We retrieved RA-related and pan-cancer information datasets from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. Six gene expression profiles and corresponding clinical information of GSE12021, GSE29746, GSE55235, GSE55457, GSE77298, and GSE89408 were adopted to perform differential expression gene analysis, enrichment, and immune component difference analyses of RA. Four machine learning algorithms, including LASSO, RF, XGBoost, and SVM, were used to identify RA-related biomarkers. Unsupervised cluster analysis was also used to decipher the heterogeneity of RA. A four-signature-based nomogram was constructed and verified to specifically diagnose RA and osteoarthritis (OA) from normal tissues. Consequently, RA-HFLS cell was utilized to investigate the biological role of CRTAM in RA. In addition, comparisons of diagnostic efficacy and biological roles among CRTAM and other classic biomarkers of RA were also performed. Results: Immune and stromal components were highly enriched in RA. Chemokine- and Th cell-related signatures were significantly activated in RA tissues. Four promising and novel biomarkers, including CRTAM, PTTG1IP, ITGB2, and MMP13, were identified and verified, which could be treated as novel treatment and diagnostic targets for RA. Nomograms based on the four signatures might aid in distinguishing and diagnosing RA, which reached a satisfactory performance in both training (AUC = 0.894) and testing (AUC = 0.843) cohorts. Two distinct subtypes of RA patients were identified, which further verified that these four signatures might be involved in the immune infiltration process. Furthermore, knockdown of CRTAM could significantly suppress the proliferation and invasion ability of RA cell line and thus could be treated as a novel therapeutic target. CRTAM owned a great diagnostic performance for RA than previous biomarkers including MMP3, S100A8, S100A9, IL6, COMP, LAG3, and ENTPD1. Mechanically, CRTAM could also be involved in the progression through immune dysfunction, fatty acid metabolism, and genomic instability across several cancer subtypes. Conclusion: CRTAM, PTTG1IP, ITGB2, and MMP13 were highly expressed in RA tissues and might function as pivotal diagnostic and treatment targets by deteriorating the immune dysfunction state. In addition, CRTAM might fuel cancer progression through immune signals, especially among RA patients.


Subject(s)
Arthritis, Rheumatoid , Neoplasms , Humans , Silicon , Matrix Metalloproteinase 13 , Biomarkers , Algorithms
18.
Life Sci ; 343: 122536, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38423170

ABSTRACT

AIMS: The main pathological features of osteoarthritis (OA) include the degeneration of articular cartilage and a decrease in matrix synthesis. Chondrocytes, which contribute to matrix synthesis, play a crucial role in the development of OA. Liquiritin, an effective ingredient extracted from Glycyrrhiza uralensis Fisch., has been used for over 1000 years to treat OA. This study aims to investigate the impact of liquiritin on OA and its underlying mechanism. MATERIALS AND METHODS: Gait and hot plate tests assessed mouse behavior, while Micro-CT and ABH/OG staining observed joint morphological changes. The TUNEL kit detected chondrocyte apoptosis. Western blot and immunofluorescence techniques determined the expression levels of cartilage metabolism markers COL2 and MMP13, as well as apoptosis markers caspase3, bcl2, P53, and PUMA. KEGG analysis and molecular docking technology were used to verify the relationship between liquiritin and P53. KEY FINDINGS: Liquiritin alleviated pain sensitivity and improved gait impairment in OA mice. Additionally, we found that liquiritin could increase COL2 levels and decrease MMP13 levels both in vivo and in vitro. Importantly, liquiritin reduced chondrocyte apoptosis induced by OA, through decreased expression of caspase3 expression and increased expression of bcl2 expression. Molecular docking revealed a strong binding affinity between liquiritin and P53. Both in vivo and in vitro studies demonstrated that liquiritin suppressed the expression of P53 and PUMA in cartilage. SIGNIFICANCE: This indicated that liquiritin may alleviate OA progression by inhibiting the P53/PUMA signaling pathway, suggesting that liquiritin is a potential strategy for the treatment of OA.


Subject(s)
Cartilage, Articular , Flavanones , Glucosides , Osteoarthritis , Animals , Mice , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Flavanones/pharmacology , Glucosides/pharmacology , Matrix Metalloproteinase 13/metabolism , Molecular Docking Simulation , Osteoarthritis/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
19.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338721

ABSTRACT

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Tankyrases , Humans , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Peptide Hydrolases/drug effects , Peptide Hydrolases/metabolism , Stress, Mechanical , Tankyrases/antagonists & inhibitors
20.
J Hypertens ; 42(4): 685-693, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38406874

ABSTRACT

BACKGROUND: Endothelial nitric oxide synthase (NOS3) elicits atheroprotection by preventing extracellular matrix (ECM) proteolytic degradation through inhibition of extracellular matrix metalloproteinase inducer (EMMPRIN) and collagenase MMP-13 by still unknown mechanisms. METHODS: C57BL/6 mice lacking ApoE , NOS3, and/or MMP13 were fed with a high-fat diet for 6 weeks. Entire aortas were extracted and frozen to analyze protein and nucleic acid expression. Atherosclerotic plaques were detected by ultrasound imaging, Oil Red O (ORO) staining, and Western Blot. RNA-seq and RT-qPCR were performed to evaluate EMMPRIN, MMP-9, and EMMPRIN-targeting miRNAs. Mouse aortic endothelial cells (MAEC) were incubated to assess the role of active MMP-13 over MMP-9. One-way ANOVA or Kruskal-Wallis tests were performed to determine statistical differences. RESULTS: Lack of NOS3 in ApoE null mice fed with a high-fat diet increased severe plaque accumulation, vessel wall widening, and high mortality, along with EMMPRIN-induced expression by upregulation of miRNAs 46a-5p and 486-5p. However, knocking out MMP-13 in ApoE/NOS3 -deficient mice was sufficient to prevent mortality (66.6 vs. 26.6%), plaque progression (23.1 vs. 8.8%), and MMP-9 expression, as confirmed in murine aortic endothelial cell (MAEC) cultures, in which MMP-9 was upregulated by incubation with active recombinant MMP-13, suggesting MMP-9 as a new target of MMP-13 in atherosclerosis. CONCLUSION: We describe a novel mechanism by which the absence of NOS3 may worsen atherosclerosis through EMMPRIN-induced ECM proteolytic degradation by targeting the expression of miRNAs 146a-5p and 485-5p. Focusing on NOS3 regulation of ECM degradation could be a promising approach in the management of atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Mice , Matrix Metalloproteinase 13/metabolism , Basigin/metabolism , Matrix Metalloproteinase 9/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Extracellular Matrix/metabolism , MicroRNAs/metabolism , Apolipoproteins E/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...