Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Res ; 90(11): 1352-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21917602

ABSTRACT

Patients with amelogenesis imperfecta (AI) have defective enamel; therefore, bonded restorations of patients with AI have variable success rates. To distinguish which cases of AI may have good clinical outcomes with bonded materials, we evaluated etching characteristics and bond strength of enamel in mouse models, comparing wild-type (WT) with those having mutations in amelogenin (Amelx) and matrix metalloproteinase-20 (Mmp20), which mimic 2 forms of human AI. Etched enamel surfaces were compared for roughness by scanning electron microscopy (SEM) images. Bonding was compared through shear bond strength (SBS) studies with 2 different systems (etch-and-rinse and self-etch). Etched enamel surfaces of incisors from Amelx knock-out (AmelxKO) mice appeared randomly organized and non-uniform compared with WT. Etching of Mmp20KO surfaces left little enamel, and the etching pattern was indistinguishable from unetched surfaces. SBS results were significantly different when AmelxKO and Mmp20KO enamel surfaces were compared. A significant increase in SBS was measured for all samples when the self-etch system was compared with the etch-and-rinse system. We have developed a novel system for testing shear bond strength of mouse incisors with AI variants, and analysis of these data may have important clinical implications for the treatment of patients with AI.


Subject(s)
Amelogenesis Imperfecta/physiopathology , Amelogenin/deficiency , Dental Bonding , Dental Enamel/pathology , Disease Models, Animal , Matrix Metalloproteinase 20/deficiency , Acid Etching, Dental , Amelogenesis Imperfecta/genetics , Amelogenin/physiology , Animals , Dental Enamel/metabolism , Dental Stress Analysis , Matrix Metalloproteinase 20/physiology , Mice , Mice, Knockout , Shear Strength , Surface Properties
2.
Cells Tissues Organs ; 194(2-4): 222-6, 2011.
Article in English | MEDLINE | ID: mdl-21525715

ABSTRACT

Dental enamel development occurs in stages as observed by the changing morphology of the ameloblasts that are responsible for enamel formation. During the secretory stage of development, proteins including MMP20 are secreted into the enamel matrix. MMP20 is required for proper enamel formation as mutation of the Mmp20 gene causes autosomal recessive amelogenesis imperfecta. Here, we examined in detail the morphology of the Mmp20-null ameloblast cell layer. Intriguingly, we found that the Mmp20-null mouse secretory stage ameloblasts retract their Tomes' processes as if preparing to enter the maturation stage but later reextend their Tomes' processes as if resuming the secretory stage. We also demonstrated that MMP20 cleaves epithelial cadherin, i.e. E-cadherin. Cadherins are transmembrane proteins with extracellular domains that provide adhesive contacts between neighboring cells. Their intracellular domains bind to the cell cytoskeleton through catenins, including ß-catenin. When specific MMPs cleave the cadherin extracellular domain, ß-catenin is released and may locate to the cell nucleus as a transcription factor. Therefore, MMP20 may influence ameloblast developmental progression through hydrolysis of cadherin extracellular domains with associated release of transcription factor(s).


Subject(s)
Ameloblasts/cytology , Ameloblasts/metabolism , Cadherins/metabolism , Matrix Metalloproteinase 20/metabolism , Animals , Dental Enamel/growth & development , Dental Enamel/metabolism , Humans , Immunoblotting , Matrix Metalloproteinase 20/deficiency , Mice , Mice, Inbred C57BL , Sus scrofa
3.
Connect Tissue Res ; 48(1): 39-45, 2007.
Article in English | MEDLINE | ID: mdl-17364666

ABSTRACT

Dental enamel is the most mineralized tissue of vertebrate organisms. Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. The formation of an ordered enamel organic extracellular matrix (ECM) seems be a crucial step for the proper formation of mineral phase. Polarizing microscopy demonstrates that the ordered supramolecular structure of the secretory-stage enamel organic ECM is strongly birefringent. In the present work we analyzed the birefringence of secretory-stage enamel organic ECM in amelogenin (Amelx)- and enamelysin (Mmp20)-deficient mice. Female Amelx+/- animals showed significant reduction in optical retardation values when compared with the Amelx+/+ subgroup (p=0.0029). The secretory-stage enamel organic ECM of the Amelx-/- subgroup did not exhibit birefringence. The secretory-stage enamel organic ECM of Mmp20-/- mice showed a significant decrease in optical retardation as compared with Mmp20+/+ and Mmp20+/- mice (p=0.0000). Mmp20+/- and Mmp20+/+ mice exhibited similar birefringence (p=1.0000). The results presented here support growing evidence for the idea that the birefringence of secretory-stage enamel organic ECM is influenced by the ordered supramolecular organization of its components.


Subject(s)
Amelogenin/deficiency , Dental Enamel/metabolism , Extracellular Matrix/physiology , Matrix Metalloproteinase 20/deficiency , Animals , Birefringence , Dental Enamel/physiology , Female , Mice , Mice, Knockout , Microscopy, Polarization
SELECTION OF CITATIONS
SEARCH DETAIL
...