Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.363
Filter
1.
Nat Commun ; 15(1): 4210, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806504

ABSTRACT

The chemokine CXCL12 promotes glioblastoma (GBM) recurrence after radiotherapy (RT) by facilitating vasculogenesis. Here we report outcomes of the dose-escalation part of GLORIA (NCT04121455), a phase I/II trial combining RT and the CXCL12-neutralizing aptamer olaptesed pegol (NOX-A12; 200/400/600 mg per week) in patients with incompletely resected, newly-diagnosed GBM lacking MGMT methylation. The primary endpoint was safety, secondary endpoints included maximum tolerable dose (MTD), recommended phase II dose (RP2D), NOX-A12 plasma levels, topography of recurrence, tumor vascularization, neurologic assessment in neuro-oncology (NANO), quality of life (QOL), median progression-free survival (PFS), 6-months PFS and overall survival (OS). Treatment was safe with no dose-limiting toxicities or treatment-related deaths. The MTD has not been reached and, thus, 600 mg per week of NOX-A12 was established as RP2D for the ongoing expansion part of the trial. With increasing NOX-A12 dose levels, a corresponding increase of NOX-A12 plasma levels was observed. Of ten patients enrolled, nine showed radiographic responses, four reached partial remission. All but one patient (90%) showed at best response reduced perfusion values in terms of relative cerebral blood volume (rCBV). The median PFS was 174 (range 58-260) days, 6-month PFS was 40.0% and the median OS 389 (144-562) days. In a post-hoc exploratory analysis of tumor tissue, higher frequency of CXCL12+ endothelial and glioma cells was significantly associated with longer PFS under NOX-A12. Our data imply safety of NOX-A12 and its efficacy signal warrants further investigation.


Subject(s)
Aptamers, Nucleotide , Brain Neoplasms , Chemokine CXCL12 , Glioblastoma , Humans , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Aptamers, Nucleotide/administration & dosage , Chemokine CXCL12/blood , Male , Female , Middle Aged , Aged , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy , Adult , Maximum Tolerated Dose , Quality of Life , Neoplasm Recurrence, Local
2.
ESMO Open ; 9(4): 102961, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640748

ABSTRACT

BACKGROUND: Protein arginine methyltransferase 5 (PRMT5) methylates multiple substrates dysregulated in cancer, including spliceosome machinery components. PF-06939999 is a selective small-molecule PRMT5 inhibitor. PATIENTS AND METHODS: This phase I dose-escalation and -expansion trial (NCT03854227) enrolled patients with selected solid tumors. PF-06939999 was administered orally once or twice a day (q.d./b.i.d.) in 28-day cycles. The objectives were to evaluate PF-06939999 safety and tolerability to identify maximum tolerated dose (MTD) and recommended part 2 dose (RP2D), and assess pharmacokinetics (PK), pharmacodynamics [changes in plasma symmetric dimethylarginine (SDMA) levels], and antitumor activities. RESULTS: In part 1 dose escalation, 28 patients received PF-06939999 (0.5 mg q.d. to 6 mg b.i.d.). Four of 24 (17%) patients reported dose-limiting toxicities: thrombocytopenia (n = 2, 6 mg b.i.d.), anemia (n = 1, 8 mg q.d.), and neutropenia (n = 1, 6 mg q.d.). PF-06939999 exposure increased with dose. Steady-state PK was achieved by day 15. Plasma SDMA was reduced at steady state (58%-88%). Modulation of plasma SDMA was dose dependent. No MTD was determined. In part 2 dose expansion, 26 patients received PF-06939999 6 mg q.d. (RP2D). Overall (part 1 + part 2), the most common grade ≥3 treatment-related adverse events included anemia (28%), thrombocytopenia/platelet count decreased (22%), fatigue (6%), and neutropenia (4%). Three patients (6.8%) had confirmed partial response (head and neck squamous cell carcinoma, n = 1; non-small-cell lung cancer, n = 2), and 19 (43.2%) had stable disease. No predictive biomarkers were identified. CONCLUSIONS: PF-06939999 demonstrated a tolerable safety profile and objective clinical responses in a subset of patients, suggesting that PRMT5 is an interesting cancer target with clinical validation. However, no predictive biomarker was identified. The role of PRMT5 in cancer biology is complex and requires further preclinical, mechanistic investigation to identify predictive biomarkers for patient selection.


Subject(s)
Neoplasms , Protein-Arginine N-Methyltransferases , Humans , Male , Female , Middle Aged , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Aged , Adult , Mutation , Maximum Tolerated Dose , RNA Splicing Factors , Dose-Response Relationship, Drug
3.
Cancer Treat Res Commun ; 39: 100809, 2024.
Article in English | MEDLINE | ID: mdl-38593512

ABSTRACT

INTRODUCTION: We aimed to assess the safety, pharmacokinetic profile, and antitumor activity of adavosertib monotherapy in Japanese patients with advanced solid tumors. MATERIALS AND METHODS: This was a single-center, open-label, phase I study with two consecutive cohorts (250 mg and 200 mg cohorts). Patients received adavosertib at 250 mg or 200 mg, orally once daily for 5 days on and 2 days off for Weeks 1 and 2 of a 21-day cycle. RESULTS: Dose-limiting toxicities (Grade 3 febrile neutropenia) occurred in 2/6 patients in the 250 mg cohort. None of the three patients in the 200 mg cohort developed dose-limiting toxicities. The most frequent treatment-emergent adverse event was nausea (250 mg: 83.3 %; 200 mg: 100.0 %). Median time to peak drug concentration was 4.03 and 2.08 h after the first dose and 2.82 and 1.90 h after multiple dosing in the 250 and 200 mg cohorts, respectively; respective mean terminal elimination half-lives were 7.36 and 7.30 h (first dose) and 10.55 and 8.88 h (multiple dosing). Systemic exposure increased in a slightly more than dose-proportional manner. No RECIST v1.1 response was observed. Disease control rate was 0 % and 33.3 % in the 250 and 200 mg cohorts, respectively. One patient (33.3 %) in the 200 mg cohort showed a best overall response of stable disease at ≥ 8 weeks; the rest showed progressive disease. CONCLUSIONS: Adavosertib 200 mg once daily was well tolerated in this patient population and no safety concerns were raised. Exposure increased in a slightly more than dose-proportional manner and limited antitumor activity was shown. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04462952.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Male , Female , Middle Aged , Aged , Adult , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Japan , East Asian People
4.
Math Biosci ; 372: 109186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580078

ABSTRACT

Metronomic chemotherapy refers to the frequent administration of chemotherapeutic agents at a lower dose and presents an attractive alternative to conventional chemotherapy with encouraging response rates. However, the schedule of the therapy, including the dosage of the drug, is usually based on empiricism. The confounding effects of tumor-endothelial-immune interactions during metronomic administration of drugs have not yet been explored in detail, resulting in an incomplete assessment of drug dose and frequency evaluations. The present study aimed to gain a mechanistic understanding of different actions of metronomic chemotherapy using a mathematical model. We have established an analytical condition for determining the dosage and frequency of the drug depending on its clearance rate for complete tumor elimination. The model also brings forward the immune-mediated clearance of the tumor during the metronomic administration of the chemotherapeutic agent. The results from the global sensitivity analysis showed an increase in the sensitivity of drug and immune-mediated killing factors toward the tumor population during metronomic scheduling. Our results emphasize metronomic scheduling over the maximum tolerated dose (MTD) and define a model-based approach for approximating the optimal schedule of drug administration to eliminate tumors while minimizing harm to the immune cells and the patient's body.


Subject(s)
Administration, Metronomic , Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Antineoplastic Agents/administration & dosage , Models, Theoretical , Models, Biological , Maximum Tolerated Dose , Mathematical Concepts
5.
Clin Trials ; 21(3): 267-272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570906

ABSTRACT

With the advent of targeted agents and immunological therapies, the medical research community has become increasingly aware that conventional methods for determining the best dose or schedule of a new agent are inadequate. It has been well established that conventional phase I designs cannot reliably identify safe and effective doses. This problem applies, generally, for cytotoxic agents, radiation therapy, targeted agents, and immunotherapies. To address this, the US Food and Drug Administration's Oncology Center of Excellence initiated Project Optimus, with the goal "to reform the dose optimization and dose selection paradigm in oncology drug development." As a response to Project Optimus, the articles in this special issue of Clinical Trials review recent advances in methods for choosing the dose or schedule of a new agent with an overall objective of informing clinical trialists of these innovative designs. This introductory article briefly reviews problems with conventional methods, the regulatory changes that encourage better dose optimization designs, and provides brief summaries of the articles that follow in this special issue.


Subject(s)
Antineoplastic Agents , Dose-Response Relationship, Drug , Research Design , United States Food and Drug Administration , Humans , United States , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Medical Oncology/methods , Maximum Tolerated Dose , Clinical Trials, Phase I as Topic/methods , Drug Development/methods
6.
Cancer Res Commun ; 4(4): 1165-1173, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602417

ABSTRACT

PURPOSE: Despite efficacy of approved FGFR inhibitors, emergence of polyclonal secondary mutations in the FGFR kinase domain leads to acquired resistance. KIN-3248 is a selective, irreversible, orally bioavailable, small-molecule inhibitor of FGFR1-4 that blocks both primary oncogenic and secondary kinase domain resistance FGFR alterations. EXPERIMENTAL DESIGN: A first-in-human, phase I study of KIN-3248 was conducted in patients with advanced solid tumors harboring FGFR2 and/or FGFR3 gene alterations (NCT05242822). The primary objective was determination of MTD/recommended phase II dose (RP2D). Secondary and exploratory objectives included antitumor activity, pharmacokinetics, pharmacodynamics, and molecular response by circulating tumor DNA (ctDNA) clearance. RESULTS: Fifty-four patients received doses ranging from 5 to 50 mg orally daily across six cohorts. Intrahepatic cholangiocarcinoma (48.1%), gastric (9.3%), and urothelial (7.4%) were the most common tumors. Tumors harbored FGFR2 (68.5%) or FGFR3 (31.5%) alterations-23 (42.6%) received prior FGFR inhibitors. One dose-limiting toxicity (hypersensitivity) occurred in cohort 1 (5 mg). Treatment-related, adverse events included hyperphosphatemia, diarrhea, and stomatitis. The MTD/RP2D was not established. Exposure was dose proportional and concordant with hyperphosphatemia. Five partial responses were observed; 4 in FGFR inhibitor naïve and 1 in FGFR pretreated patients. Pretreatment ctDNA profiling confirmed FGFR2/3 alterations in 63.3% of cases and clearance at cycle 2 associated with radiographic response. CONCLUSION: The trial was terminated early for commercial considerations; therefore, RP2D was not established. Preliminary clinical data suggest that KIN-3248 is a safe, oral FGFR1-4 inhibitor with favorable pharmacokinetic parameters, though further dose escalation was required to nominate the MTD/RP2D. SIGNIFICANCE: KIN-3248 was a rationally designed, next generation selective FGFR inhibitor, that was effective in interfering with both FGFR wild-type and mutant signaling. Clinical data indicate that KIN-3248 is safe with a signal of antitumor activity. Translational science support the mechanism of action in that serum phosphate was proportional with exposure, paired biopsies suggested phospho-ERK inhibition (a downstream target of FGFR2/3), and ctDNA clearance may act as a RECIST response surrogate.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Female , Male , Middle Aged , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Aged , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Maximum Tolerated Dose , Mutation , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics
7.
Clin Trials ; 21(3): 350-357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618916

ABSTRACT

In the last few years, numerous novel designs have been proposed to improve the efficiency and accuracy of phase I trials to identify the maximum-tolerated dose (MTD) or the optimal biological dose (OBD) for noncytotoxic agents. However, the conventional 3+3 approach, known for its and poor performance, continues to be an attractive choice for many trials despite these alternative suggestions. The article seeks to underscore the importance of moving beyond the 3+3 design by highlighting a different key element in trial design: the estimation of sample size and its crucial role in predicting toxicity and determining the MTD. We use simulation studies to compare the performance of the most used phase I approaches: 3+3, Continual Reassessment Method (CRM), Keyboard and Bayesian Optimal Interval (BOIN) designs regarding three key operating characteristics: the percentage of correct selection of the true MTD, the average number of patients allocated per dose level, and the average total sample size. The simulation results consistently show that the 3+3 algorithm underperforms in comparison to model-based and model-assisted designs across all scenarios and metrics. The 3+3 method yields significantly lower (up to three times) probabilities in identifying the correct MTD, often selecting doses one or even two levels below the actual MTD. The 3+3 design allocates significantly fewer patients at the true MTD, assigns higher numbers to lower dose levels, and rarely explores doses above the target dose-limiting toxicity (DLT) rate. The overall performance of the 3+3 method is suboptimal, with a high level of unexplained uncertainty and significant implications for accurately determining the MTD. While the primary focus of the article is to demonstrate the limitations of the 3+3 algorithm, the question remains about the preferred alternative approach. The intention is not to definitively recommend one model-based or model-assisted method over others, as their performance can vary based on parameters and model specifications. However, the presented results indicate that the CRM, Keyboard, and BOIN designs consistently outperform the 3+3 and offer improved efficiency and precision in determining the MTD, which is crucial in early-phase clinical trials.


Subject(s)
Algorithms , Bayes Theorem , Clinical Trials, Phase I as Topic , Computer Simulation , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Research Design , Humans , Sample Size , Clinical Trials, Phase I as Topic/methods , Models, Statistical
8.
Clin Trials ; 21(3): 322-330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591582

ABSTRACT

Given that novel anticancer therapies have different toxicity profiles and mechanisms of action, it is important to reconsider the current approaches for dose selection. In an effort to move away from considering the maximum tolerated dose as the optimal dose, the Food and Drug Administration Project Optimus points to the need of incorporating long-term toxicity evaluation, given that many of these novel agents lead to late-onset or cumulative toxicities and there are no guidelines on how to handle them. Numerous methods have been proposed to handle late-onset toxicities in dose-finding clinical trials. A summary and comparison of these methods are provided. Moreover, using PI3K inhibitors as a case study, we show how late-onset toxicity can be integrated into the dose-optimization strategy using current available approaches. We illustrate a re-design of this trial to compare the approach to those that only consider early toxicity outcomes and disregard late-onset toxicities. We also provide proposals going forward for dose optimization in early development of novel anticancer agents with considerations for late-onset toxicities.


Subject(s)
Antineoplastic Agents , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Neoplasms , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Research Design , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/administration & dosage
9.
Anticancer Drugs ; 35(5): 450-458, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452059

ABSTRACT

The purpose of this study is to establish the recommended phase 2 dose for regorafenib in combination with sildenafil for patients with advanced solid tumors. Secondary outcomes included identification of antitumor effects of regorafenib and sildenafil, toxicity of the combination, determination of PDE5 expression in tumor samples, and the impact of sildenafil on the pharmacokinetics of regorafenib. This study was a phase 1, open-label single-arm dose-escalation trial using a 3 + 3 design. Additional patients were enrolled at the maximum tolerated dose (MTD) until a total of 12 patients were treated at the MTD. A total of 29 patients were treated in this study. The median duration of treatment was 8 weeks. The recommended phase 2 doses determined in this study are regorafenib 160 mg daily with sildenafil 100 mg daily. The most common toxicities included palmar-plantar erythrodysesthesia syndrome (20 patients, 69%) and hypophosphatemia (18 patients, 62%). Two patients (7%) experienced grade 4 lipase increase. Objective responses were not observed; however, 14 patients (48%) had a period of stable disease during the study. Stable disease for up to 12 months was observed in patients with ovarian cancer as well as up to 20 months for a patient with cervical cancer. The combination of regorafenib and sildenafil at the recommended phase 2 dose is safe and generally well tolerated. Disease control in patients with gynecologic malignancies was especially encouraging. Further evaluation of the combination of regorafenib and sildenafil in gynecologic malignancies is warranted. Clinical Trial Registration Number: NCT02466802.


Subject(s)
Genital Neoplasms, Female , Neoplasms , Adult , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Genital Neoplasms, Female/chemically induced , Genital Neoplasms, Female/drug therapy , Maximum Tolerated Dose , Neoplasms/drug therapy , Neoplasms/pathology , Phenylurea Compounds/adverse effects , Pyridines/therapeutic use , Sildenafil Citrate/adverse effects
10.
Invest New Drugs ; 42(2): 221-228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441850

ABSTRACT

AbGn-107 is an antibody-drug conjugate directed against AG-7 antigen, a Lewis A-like glycol-epitope expressed in a variety of gastrointestinal (GI) malignancies. Based on promising antitumor activity of AbGn-107 in both in vitro and in vivo preclinical studies, we performed a GI cancer-specific Phase I trial. Standard 3 + 3 dose escalation was used evaluating intravenous doses ranging from 0.1 mg/kg every 4 weeks to 1.0 mg/kg every 2 weeks. Key eligibility included chemo-refractory locally advanced, recurrent, or metastatic gastric, colorectal, pancreatic, or biliary cancer, with ECOG PS 0-1; positive AG-7 expression was not required during dose escalation phase. Patients were treated until disease progression or unacceptable toxicity, with tumor assessments every 8 weeks. Primary objectives included safety and determination of maximum tolerated dose; secondary objectives included efficacy defined by objective response rate. Thirty-nine patients were enrolled across seven dose levels during dose escalation phase. Based on safety profile and pharmacokinetic data, 1.0 mg/kg Q2W was selected as the dose schedule for cohort expansion phase, in which an additional seven patients were enrolled. Median number of lines of prior therapy was 3 (range 1-7). AbGn-107 was generally well-tolerated, with infections, cytopenias, hyponatremia, fatigue, abdominal pain, and diarrhea representing the most common grade 3 or higher treatment-emergent adverse events. One subject achieved a partial response, while 18 (46.2%) achieved a best response of stable disease. Disease control lasting > 6 months was observed in 6 subjects (13.0%), including 4 of 15 (26.7%) treated at the highest dose level. AbGn-107 showed a reasonable safety profile and modest clinical activity in this highly pretreated patient population. Further evaluation is required to assess the clinical validity of AG-7 as a suitable antigen for therapeutic targeting. Clinical Trial information: NCT02908451.


Subject(s)
Gastrointestinal Neoplasms , Immunoconjugates , Humans , Immunoconjugates/adverse effects , Gastrointestinal Neoplasms/drug therapy , Maximum Tolerated Dose
11.
Med ; 5(5): 445-458.e3, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38521070

ABSTRACT

BACKGROUND: BEBT-109 is an oral pan-mutant-selective inhibitor of epidermal growth factor receptor (EGFR) that demonstrated promising antitumor potency in preclinical models. METHODS: This first-in-human study was a single-arm, open-label, two-stage study. Phase Ia dose-escalation study evaluated the safety and pharmacokinetics of BEBT-109 in 11 patients with EGFR T790M-mutated advanced non-small cell lung cancer (aNSCLC). Phase Ib dose-expansion study evaluated the safety and efficacy of BEBT-109 in 18 patients with EGFR exon 20 insertion (ex20ins)-mutated treatment-refractory aNSCLC. The primary outcomes were adverse events and antitumor activity. Clinical trial registration number CTR20192575. FINDINGS: The phase Ia study demonstrated no dose-limiting toxicity, no observation of the maximum tolerated dose, and no new safety signals with BEBT-109 in the dose range of 20-180 mg/d, suggesting that BEBT-109 had an acceptable safety profile among patients with EGFR T790M-mutated aNSCLC. Plasma pharmacokinetics of BEBT-109 showed a dose-proportional increase in the area under the curve and maximal concentration, with no significant drug accumulation. The dose-expansion study demonstrated that BEBT-109 treatment was tolerable across the three dose levels. The three most common treatment-related adverse events were diarrhea (100%; 22.2% ≥Grade 3), rash (66.7%; 5.6% ≥Grade 3), and anemia (61.1%; 0% ≥Grade 3). The objective response rate was 44.4% (8 of 18). Median progression-free survival was 8.0 months (95% confidence intervals, 1.33-14.67). CONCLUSION: Preliminary findings showed that BEBT-109 had an acceptable safety profile and favorable antitumor activity in patients with refractory EGFR ex20ins-mutated aNSCLC. FUNDING: National Natural Science Foundation of China.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Middle Aged , Female , Aged , Exons/genetics , Mutation , Maximum Tolerated Dose , Adult , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
12.
Clin Cancer Res ; 30(10): 2111-2120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38502104

ABSTRACT

PURPOSE: Xevinapant is an orally available inhibitor of apoptosis proteins (IAP) inhibitor. Preclinical data suggest that IAP antagonism may synergize with immune checkpoint blockers by modulating the NFκB pathway in immune cells. PATIENTS AND METHODS: Adult patients with non-high microsatellite instability advanced/metastatic pancreatic ductal adenocarcinoma (PDAC) or colorectal cancer were enrolled in this phase Ib/II study and received pembrolizumab 200 mg every 3 weeks intravenously, and ascending doses of oral xevinapant (100, 150, and 200 mg daily for 14 days on/7 days off). Dose escalation followed a 3+3 design with a 21-day dose-limiting toxicity (DLT) evaluation period. Following the determination of the recommended phase II dose (RP2D), 14 patients with PDAC and 14 patients with colorectal cancer were enrolled in expansion cohorts to assess preliminary efficacy. RESULTS: Forty-one patients (26 males) with a median age of 64 years were enrolled: 13 in the dose escalation and 28 in the two expansion cohorts. No DLT was observed during dose escalation. The RP2D was identified as xevinapant 200 mg/day + pembrolizumab 200 mg every 3 weeks. The most common adverse events (AE) were fatigue (37%), gastrointestinal AE (decreased appetite in 37%, nausea in 24%, stomatitis in 12%, and diarrhea and vomiting in 10% each), and cutaneous AE (pruritus, dry skin, and rash seen in 20%, 15%, and 15% of patients, respectively). The best overall response according to RECIST1.1 was partial response (confirmed) in 1 (3%), stable disease in 4 (10%), and progressive disease in 35 (88%). CONCLUSIONS: Xevinapant combined with pembrolizumab was well tolerated with no unexpected AEs. However, antitumor activity was low.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Colorectal Neoplasms , Pancreatic Neoplasms , Humans , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Male , Female , Middle Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Aged , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capecitabine/administration & dosage , Capecitabine/adverse effects , Adult , Maximum Tolerated Dose , Aged, 80 and over , Treatment Outcome , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology
13.
Nat Med ; 30(5): 1320-1329, 2024 May.
Article in English | MEDLINE | ID: mdl-38480922

ABSTRACT

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Interleukin-13 Receptor alpha2 Subunit/immunology , Middle Aged , Male , Receptors, Chimeric Antigen/immunology , Female , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Injections, Spinal , Maximum Tolerated Dose
14.
Nucl Med Biol ; 132-133: 108895, 2024.
Article in English | MEDLINE | ID: mdl-38493748

ABSTRACT

OBJECTIVE: Good's buffer or HEPES has advantages over other buffers commonly used in radiopharmaceutical preparation as it exhibits significantly lower complexation tendency with metal ions. However, use of HEPES buffer for radiolabeling reactions, meant for clinical applications, has been underrated due to the non-availability of sufficient toxicity data. The objective of the present study is to find the evidences towards safety of intravenous administration of HEPES through systemic toxicological studies in small animal model to support its safe application for clinical exploitation. EXPERIMENTAL: A pilot study was performed to investigate the lethal dose of HEPES in female Sprague Dawley rats by administering seven different doses of HEPES solution (150 to 2000 mg/kg), through intravenous pathway. Similarly, for determining maximum tolerated dose (MTD), gradually increasing doses of HEPES (50 to 950 mg/kg) were administered in the same species via similar pathway. Various hematological and clinical pathological investigations were carried out in order to find out the safe administration dose of HEPES in rats. RESULTS: No mortality was observed up to 2000 mg/kg doses of HEPES. The doses beyond 300 mg/kg resulted few temporary adverse effects, though these were found to disappear within 4-5 days of dosing. CONCLUSION: The amount of HEPES to be administered during clinical intervention is usually much lower (typically 1-2.5 mg per kg of body weight of healthy adult) than the MTD determined in rat model during present report. Hence, the utilization of this buffer for preparation of radiolabeled drugs for human investigation may be safe. However, further detailed investigations may be warranted for supporting the candidature of Good's buffer for regular clinical exploitation.


Subject(s)
Administration, Intravenous , Rats, Sprague-Dawley , Animals , Rats , Female , Nuclear Medicine , Buffers , Maximum Tolerated Dose , Safety
15.
Clin Trials ; 21(3): 331-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554038

ABSTRACT

Combination therapy is increasingly being explored as a promising approach for improving cancer treatment outcomes. However, identifying effective dose combinations in early oncology drug development is challenging due to limited sample sizes in early-phase clinical trials. This task becomes even more complex when multiple agents are being escalated simultaneously, potentially leading to a loss of monotonic toxicity order with respect to the dose. Traditional single-agent trial designs are insufficient for this multi-dimensional problem, necessitating the development and implementation of dose-finding methods specifically designed for drug combinations. While, in practice, approaches to this problem have focused on preselecting combinations with a known toxicity order and applying single-agent designs, this limits the number of combinations considered and may miss promising dose combinations. In recent years, several novel designs have been proposed for exploring partially ordered drug combination spaces with the goal of identifying a maximum tolerated dose combination, based on safety, or an optimal dose combination, based on toxicity and efficacy. However, their implementation in clinical practice remains limited. In this article, we describe the application of the partial order continual reassessment method and its extensions for combination therapies in early-phase clinical trials. We present completed trials that use safety endpoints to identify maximum tolerated dose combinations and adaptively use both safety and efficacy endpoints to determine optimal treatment strategies. We discuss the effectiveness of the partial-order continual reassessment method and its extensions in identifying optimal treatment strategies and provide our experience with executing these novel adaptive designs in practice. By utilizing innovative dose-finding methods, researchers and clinicians can more effectively navigate the challenges of combination therapy development, ultimately improving patient outcomes in the treatment of cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Maximum Tolerated Dose , Neoplasms , Research Design , Humans , Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Development/methods , Dose-Response Relationship, Drug , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic/methods
16.
Pediatr Blood Cancer ; 71(6): e30938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520670

ABSTRACT

PURPOSE: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors. SEMA4D was identified as a strong candidate proto-oncogene in a model of osteosarcoma. Based on these preclinical and clinical data, we conducted a phase 1/2 study to determine the recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics, and immunogenicity, of pepinemab in pediatric patients with recurrent/refractory solid tumors, and activity in osteosarcoma. EXPERIMENTAL DESIGN: Pepinemab was administered intravenously on Days 1 and 15 of a 28-day cycle at 20 mg/kg, the adult RP2D. Part A (phase 1) used a Rolling 6 design; Part B (phase 2) used a Simon 2-stage design in patients with osteosarcoma. Pharmacokinetics and target saturation were evaluated in peripheral blood. RESULTS: Pepinemab (20 mg/kg) was well tolerated and no dose-limiting toxicities were observed during Part A. There were no objective responses. Two patients with osteosarcoma achieved disease control and prolonged stable disease. Pepinemab pharmacokinetics were similar to adults. CONCLUSIONS: Pepinemab (20 mg/kg) is safe, well tolerated and resulted in adequate and sustained target saturation in pediatric patients. Encouraging disease control in two patients with osteosarcoma warrants further investigation with novel combination strategies to modulate the tumor microenvironment and antitumor immune response. CLINICAL TRIAL REGISTRY: This trial is registered as NCT03320330 at Clinicaltrials.gov. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Neoplasm Recurrence, Local , Neoplasms , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Drug Resistance, Neoplasm , Maximum Tolerated Dose , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasms/drug therapy , Osteosarcoma/drug therapy , Osteosarcoma/pathology
17.
Oncologist ; 29(4): e514-e525, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38297981

ABSTRACT

PURPOSE: This first-in-human phase I dose-escalation study evaluated the safety, pharmacokinetics, and efficacy of tinengotinib (TT-00420), a multi-kinase inhibitor targeting fibroblast growth factor receptors 1-3 (FGFRs 1-3), Janus kinase 1/2, vascular endothelial growth factor receptors, and Aurora A/B, in patients with advanced solid tumors. PATIENTS AND METHODS: Patients received tinengotinib orally daily in 28-day cycles. Dose escalation was guided by Bayesian modeling using escalation with overdose control. The primary objective was to assess dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and dose recommended for dose expansion (DRDE). Secondary objectives included pharmacokinetics and efficacy. RESULTS: Forty-eight patients were enrolled (dose escalation, n = 40; dose expansion, n = 8). MTD was not reached; DRDE was 12 mg daily. DLTs were palmar-plantar erythrodysesthesia syndrome (8 mg, n = 1) and hypertension (15 mg, n = 2). The most common treatment-related adverse event was hypertension (50.0%). In 43 response-evaluable patients, 13 (30.2%) achieved partial response (PR; n = 7) or stable disease (SD) ≥ 24 weeks (n = 6), including 4/11 (36.4%) with FGFR2 mutations/fusions and cholangiocarcinoma (PR n = 3; SD ≥ 24 weeks n = 1), 3/3 (100.0%) with hormone receptor (HR)-positive/HER2-negative breast cancer (PR n = 2; SD ≥ 24 weeks n = 1), 2/5 (40.0%) with triple-negative breast cancer (TNBC; PR n = 1; SD ≥ 24 weeks n = 1), and 1/1 (100.0%) with castrate-resistant prostate cancer (CRPC; PR). Four of 12 patients (33.3%; HR-positive/HER2-negative breast cancer, TNBC, prostate cancer, and cholangiocarcinoma) treated at DRDE had PRs. Tinengotinib's half-life was 28-34 hours. CONCLUSIONS: Tinengotinib was well tolerated with favorable pharmacokinetic characteristics. Preliminary findings indicated potential clinical benefit in FGFR inhibitor-refractory cholangiocarcinoma, HER2-negative breast cancer (including TNBC), and CRPC. Continued evaluation of tinengotinib is warranted in phase II trials.


Subject(s)
Antineoplastic Agents , Cholangiocarcinoma , Hypertension , Neoplasms , Prostatic Neoplasms, Castration-Resistant , Triple Negative Breast Neoplasms , Male , Humans , Triple Negative Breast Neoplasms/drug therapy , Bayes Theorem , Prostatic Neoplasms, Castration-Resistant/drug therapy , Vascular Endothelial Growth Factor A , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/adverse effects , Cholangiocarcinoma/drug therapy , Hypertension/chemically induced , Maximum Tolerated Dose
18.
Cancer ; 130(11): 1991-2002, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38404184

ABSTRACT

BACKGROUND: This study investigated the safety and efficacy of an anti-CTLA-4 monoclonal antibody (CS1002) as monotherapy and in combination with an anti-PD-1 monoclonal antibody (CS1003) in patients with advanced/metastatic solid tumors. METHODS: The phase 1 study involved phase 1a monotherapy dose-escalation (part 1) and phase 1b combination therapy dose escalation (part 2) and expansion (part 3). Various dosing schedules of CS1002 (0.3, 1, or 3 mg/kg every 3 weeks, or 3 mg/kg every 9 weeks) were evaluated with 200 mg CS1003 every 3 weeks in part 3. RESULTS: Parts 1, 2, and 3 included a total of 13, 18, and 61 patients, respectively. No dose-limiting toxicities or maximum tolerated doses were observed. Treatment-related adverse events (TRAEs) were reported in 30.8%, 83.3%, and 75.0% of patients in parts 1, 2, and 3, respectively. Grade ≥3 TRAEs were experienced by 15.4%, 50.0%, and 18.3% of patients in each part. Of 61 patients evaluable for efficacy, 23 (37.7%) achieved objective responses in multiple tumor types. Higher objective response rates were observed with conventional and high-dose CS1002 regimens (1 mg/kg every 3 weeks or 3 mg/kg every 9 weeks) compared to low-dose CS1002 (0.3 mg/kg every 3 weeks) in microsatellite instability-high/mismatch repair-deficient tumors, melanoma, and hepatocellular carcinoma (50.0% vs. 58.8%, 14.3% vs. 42.9%, and 0% vs. 16.7%). CONCLUSION: CS1002, as monotherapy, and in combination with CS1003, had a manageable safety profile across a broad dosing range. Promising antitumor activities were observed in patients with immune oncology (IO)-naive and IO-refractory tumors across CS1002 dose levels when combined with CS1003, supporting further evaluation of this treatment combination for solid tumors. PLAIN LANGUAGE SUMMARY: CS1002 is a human immunoglobulin (Ig) G1 monoclonal antibody that blocks the interaction of CTLA-4 with its ligands and increases T-cell activation/proliferation. CS1003, now named nofazinlimab, is a humanized, recombinant IgG4 monoclonal antibody that blocks the interaction between human PD-1 and its ligands. In this original article, we determined the safety profile of CS1002 as monotherapy and in combination with CS1003. Furthermore, we explored the antitumor activity of the combination in anti-programmed cell death protein (ligand)-1 (PD-[L]1)-naive microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) pan tumors, and anti-PD-(L)1-refractory melanoma and hepatocellular carcinoma (HCC). CS1002 in combination with CS1003 had manageable safety profile across a broad dosing range and showed promising antitumor activities across CS1002 dose levels when combined with CS1003. This supports further assessment of CS1002 in combination with CS1003 for the treatment of solid tumors.


Subject(s)
Antibodies, Monoclonal, Humanized , CTLA-4 Antigen , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Male , Female , Middle Aged , Neoplasms/drug therapy , Neoplasms/pathology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Aged , Adult , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Maximum Tolerated Dose , Aged, 80 and over , Dose-Response Relationship, Drug , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
19.
Clin Cancer Res ; 30(10): 2057-2067, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38407317

ABSTRACT

PURPOSE: Tuvusertib (M1774) is a potent, selective, orally administered ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. This first-in-human study (NCT04170153) evaluated safety, tolerability, maximum tolerated dose (MTD), recommended dose for expansion (RDE), pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of tuvusertib monotherapy. PATIENTS AND METHODS: Ascending tuvusertib doses were evaluated in 55 patients with metastatic or locally advanced unresectable solid tumors. A safety monitoring committee determined dose escalation based on PK, PD, and safety data guided by a Bayesian 2-parameter logistic regression model. Molecular responses (MR) were assessed in circulating tumor DNA samples. RESULTS: Most common grade ≥3 treatment-emergent adverse events were anemia (36%), neutropenia, and lymphopenia (both 7%). Eleven patients experienced dose-limiting toxicities, most commonly grade 2 (n = 2) or 3 (n = 8) anemia. No persistent effects on blood immune cell populations were observed. The RDE was 180 mg tuvusertib QD (once daily), 2 weeks on/1 week off treatment, which was better tolerated than the MTD (180 mg QD continuously). Tuvusertib median time to peak plasma concentration ranged from 0.5 to 3.5 hours and mean elimination half-life from 1.2 to 5.6 hours. Exposure-related PD analysis suggested maximum target engagement at ≥130 mg tuvusertib QD. Tuvusertib induced frequent MRs in the predicted efficacious dose range; MRs were enriched in patients with radiological disease stabilization, and complete MRs were detected for mutations in ARID1A, ATRX, and DAXX. One patient with platinum- and PARP inhibitor-resistant BRCA wild-type ovarian cancer achieved an unconfirmed RECIST v1.1 partial response. CONCLUSIONS: Tuvusertib demonstrated manageable safety and exposure-related target engagement. Further clinical evaluation of tuvusertib is ongoing.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Maximum Tolerated Dose , Neoplasms , Protein Kinase Inhibitors , Humans , Female , Male , Neoplasms/drug therapy , Neoplasms/pathology , Middle Aged , Aged , Adult , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Aged, 80 and over , Treatment Outcome , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use
20.
Neuro Oncol ; 26(Supplement_2): S155-S164, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38400780

ABSTRACT

BACKGROUND: This study evaluated the safety and pharmacokinetics (PK) of oral ONC201 administered twice-weekly on consecutive days (D1D2) in pediatric patients with newly diagnosed DIPG and/or recurrent/refractory H3 K27M glioma. METHODS: This phase 1 dose-escalation and expansion study included pediatric patients with H3 K27M-mutant glioma and/or DIPG following ≥1 line of therapy (NCT03416530). ONC201 was administered D1D2 at 3 dose levels (DLs; -1, 1, and 2). The actual administered dose within DLs was dependent on weight. Safety was assessed in all DLs; PK analysis was conducted in DL2. Patients receiving once-weekly ONC201 (D1) served as a PK comparator. RESULTS: Twelve patients received D1D2 ONC201 (DL1, n = 3; DL1, n = 3; DL2, n = 6); no dose-limiting toxicities or grade ≥3 treatment-related adverse events occurred. PK analyses at DL2 (D1-250 mg, n = 3; D1-625 mg, n = 3; D1D2-250 mg, n = 2; D1D2-625 mg, n = 2) demonstrated variability in Cmax, AUC0-24, and AUC0-48, with comparable exposures across weight groups. No accumulation occurred with D1D2 dosing; the majority of ONC201 cleared before administration of the second dose. Cmax was variable between groups but did not appear to increase with D1D2 dosing. AUC0-48 was greater with D1D2 than once-weekly. CONCLUSIONS: ONC201 given D1D2 was well tolerated at all DLs and associated with greater AUC0-48.


Subject(s)
Brain Neoplasms , Glioma , Mutation , Humans , Male , Female , Child , Adolescent , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Child, Preschool , Histones , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Drug Administration Schedule , Maximum Tolerated Dose , Dose-Response Relationship, Drug , Prognosis , Follow-Up Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...