Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 865
Filter
1.
Bull Math Biol ; 86(7): 85, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853189

ABSTRACT

How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.


Subject(s)
Macaca fascicularis , Mathematical Concepts , Measles virus , Measles , Viral Load , Viremia , Measles/immunology , Measles/transmission , Measles/prevention & control , Measles/virology , Measles/epidemiology , Animals , Viremia/immunology , Viremia/virology , Measles virus/immunology , Measles virus/pathogenicity , Measles virus/physiology , Likelihood Functions , Humans , Models, Immunological , Models, Biological , T-Lymphocytes/immunology , Lymphocyte Activation
2.
Methods Mol Biol ; 2808: 89-103, 2024.
Article in English | MEDLINE | ID: mdl-38743364

ABSTRACT

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Subject(s)
Host-Pathogen Interactions , Measles virus , Reverse Genetics , Viral Proteins , Measles virus/genetics , Humans , Host-Pathogen Interactions/genetics , Reverse Genetics/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Two-Hybrid System Techniques , Virus Replication , Mass Spectrometry , Protein Interaction Mapping/methods , Measles/virology , Measles/metabolism , Animals , Protein Binding
3.
Methods Mol Biol ; 2808: 121-127, 2024.
Article in English | MEDLINE | ID: mdl-38743366

ABSTRACT

During the infection of a host cell by an infectious agent, a series of gene expression changes occurs as a consequence of host-pathogen interactions. Unraveling this complex interplay is the key for understanding of microbial virulence and host response pathways, thus providing the basis for new molecular insights into the mechanisms of pathogenesis and the corresponding immune response. Dual RNA sequencing (dual RNA-seq) has been developed to simultaneously determine pathogen and host transcriptomes enabling both differential and coexpression analyses between the two partners as well as genome characterization in the case of RNA viruses. Here, we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on - but not restricted to - measles virus (MeV) as a pathogen of interest. The application of dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the structure of the viral RNA genome and on cellular innate immune responses and drive the discovery of new targets for antiviral therapy.


Subject(s)
Genome, Viral , Host-Pathogen Interactions , Measles virus , Measles , RNA, Viral , Humans , Measles/virology , Measles/immunology , Measles/genetics , Measles virus/genetics , Measles virus/pathogenicity , RNA, Viral/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Computational Biology/methods , Sequence Analysis, RNA/methods , RNA-Seq/methods , Transcriptome , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods
4.
Methods Mol Biol ; 2808: 141-152, 2024.
Article in English | MEDLINE | ID: mdl-38743368

ABSTRACT

Measles virus (MeV) infection of airway surface epithelial cells provides a site for final amplification before being released back into the environment via coughing and sneezing. Multiple cell lines have served as models of polarized epithelia for MeV infection, such as Caco2 cells (intestinal derived human epithelia) or MDCK cells (kidney derived canine epithelia). In this chapter, we describe the materials and air-liquid interface (ALI) culture conditions for maintaining four different cell lines derived from human airway epithelial cells: 16HBE14o-, Calu-3, H358, and NuLi-1. We provide methods for confirming transepithelial electrical resistance (TER) and preparing samples for microscopy as well as expected results from apical or basolateral MeV delivery. Polarized human airway derived cells serve as tissue culture models for investigating targeted questions about how MeV exits a human host. In addition, these methods are generalizable to studies of other respiratory viruses or the biology of ALI airway epithelial cells.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Measles virus , Humans , Measles virus/physiology , Epithelial Cells/virology , Epithelial Cells/cytology , Cell Culture Techniques/methods , Measles/virology , Cell Line , Dogs , Animals , Respiratory Mucosa/virology , Respiratory Mucosa/cytology , Electric Impedance
5.
Methods Mol Biol ; 2808: 209-224, 2024.
Article in English | MEDLINE | ID: mdl-38743373

ABSTRACT

The plaque reduction neutralization test (PRNT) and the enzyme-linked immunosorbent assay (ELISA) are both widely used to assess immunity to infectious diseases such as measles, but they use two different measurement principles: ELISA measures the ability of antibodies to bind to virus components, while the PRNT detects the aptitude of antibodies to prevent the infection of a susceptible cell. As a result, detection of measles virus (MV) neutralizing antibodies is the gold standard for assessing immunity to measles. However, the assay is laborious and requires experience and excellent technical skills. In addition, the result is only available after several days. Therefore, the classical PRNT is not suitable for high-throughput testing. By using an immunocolorimetric assay (ICA) to detect MV-infected cells, the standard PRNT has been developed into a focus reduction neutralization test (FRNT). This assay is faster and has improved specificity. The FRNT described here is extremely useful when immunity to measles virus needs to be assessed in patients with a specific medical condition, such as immunocompromised individuals in whom presumed residual immunity needs to be assessed. The FRNT is not generally recommended for use with large numbers of specimens, such as in a seroprevalence study.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Measles virus , Measles , Neutralization Tests , Neutralization Tests/methods , Measles virus/immunology , Measles/immunology , Measles/diagnosis , Measles/virology , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Chlorocebus aethiops , Animals , Vero Cells , Viral Plaque Assay/methods , Enzyme-Linked Immunosorbent Assay/methods
6.
Methods Mol Biol ; 2808: 247-264, 2024.
Article in English | MEDLINE | ID: mdl-38743375

ABSTRACT

Measles IgG avidity assays determine the overall strength of molecular binding between measles-specific IgG antibodies and measles virus antigens. Avidity results can distinguish recent from distant measles virus infections. Individuals who are immunologically naïve to measles virus develop low-avidity antibodies upon measles virus infection or first-time vaccination. Within 4-6 months, antibodies mature to high avidity. Measles avidity assays are most useful in the context of measles elimination. In such settings, avidity and epidemiological and clinical information are used to classify measles breakthrough infections for control and surveillance purposes and to assist in case confirmation when other laboratory results are inconclusive or nonexistent. We present a highly accurate end-titer measles avidity assay that delivers results based on IgG quality (avidity) that are independent of IgG concentration.


Subject(s)
Antibodies, Viral , Antibody Affinity , Immunoglobulin G , Measles virus , Measles , Antibody Affinity/immunology , Immunoglobulin G/immunology , Humans , Antibodies, Viral/immunology , Measles virus/immunology , Measles/immunology , Measles/virology , Antigens, Viral/immunology , Enzyme-Linked Immunosorbent Assay/methods
7.
J Infect ; 88(5): 106148, 2024 May.
Article in English | MEDLINE | ID: mdl-38588959

ABSTRACT

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.


Subject(s)
High-Throughput Nucleotide Sequencing , Measles , Humans , Uganda/epidemiology , Child, Preschool , Measles/epidemiology , Measles/virology , Infant , Child , Male , Female , Adolescent , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Genome, Viral , Adult , Young Adult , Virus Diseases/epidemiology , Virus Diseases/virology , Metagenomics , Measles virus/genetics , Measles virus/isolation & purification , Measles virus/classification
8.
Emerg Infect Dis ; 30(5): 926-933, 2024 May.
Article in English | MEDLINE | ID: mdl-38579738

ABSTRACT

We investigated clinically suspected measles cases that had discrepant real-time reverse transcription PCR (rRT-PCR) and measles-specific IgM test results to determine diagnoses. We performed rRT-PCR and measles-specific IgM testing on samples from 541 suspected measles cases. Of the 24 IgM-positive and rRT-PCR--negative cases, 20 were among children who received a measles-containing vaccine within the previous 6 months; most had low IgG relative avidity indexes (RAIs). The other 4 cases were among adults who had an unknown previous measles history, unknown vaccination status, and high RAIs. We detected viral nucleic acid for viruses other than measles in 15 (62.5%) of the 24 cases with discrepant rRT-PCR and IgM test results. Measles vaccination, measles history, and contact history should be considered in suspected measles cases with discrepant rRT-PCR and IgM test results. If in doubt, measles IgG avidity and PCR testing for other febrile exanthematous viruses can help confirm or refute the diagnosis.


Subject(s)
Antibodies, Viral , Immunoglobulin M , Measles virus , Measles , Humans , Immunoglobulin M/blood , Measles/diagnosis , Measles/epidemiology , Measles/virology , Measles/immunology , Antibodies, Viral/blood , Japan/epidemiology , Child , Child, Preschool , Measles virus/immunology , Measles virus/genetics , Male , Adult , Female , Infant , Adolescent , Immunoglobulin G/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , Measles Vaccine/immunology , Young Adult , Real-Time Polymerase Chain Reaction/methods
9.
J Infect Public Health ; 17(6): 994-1000, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636313

ABSTRACT

BACKGROUND: Measles has been a significant public health concern in Pakistan, especially in the Khyber Pakhtunkhwa (KPK) province, where sporadic and silent epidemics continue to challenge existing control measures. This study aimed to estimate the prevalence and investigate the molecular epidemiology of the measles virus (MeV) in KPK and explore the vaccination status among the suspected individuals. METHODS: A cross-sectional study was conducted between February and October 2021. A total of 336 suspected measles cases from the study population were analyzed for IgM antibodies using Enzyme-Linked Immunosorbent Assay (ELISA). Throat swabs were randomly collected from a subset of positive cases for molecular analysis. Phylogenetic analysis of MeV isolates was performed using the neighbor-joining method. The vaccination status of individuals was also recorded. RESULTS: Among the suspected participants, 61.0% (205/336) were ELISA positive for IgM antibodies, with a higher prevalence in males (64.17%) compared to females (57.04%). The majority of cases (36.0%) were observed in infants and toddlers, consistent with previous reports. The majority of IgM-positive cases (71.7%) had not received any dose of measles vaccine, highlighting gaps in vaccine coverage and the need for improved immunization programs. Genetic analysis revealed that all MeV isolates belonged to the B3 genotype, with minor genetic variations from previously reported variants in the region. CONCLUSION: This study provides valuable insights into the genetic epidemiology of the MeV in KPK, Pakistan. The high incidence of measles infection among unvaccinated individuals highlights the urgency of raising awareness about vaccine importance and strengthening routine immunization programs.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Genotype , Immunoglobulin M , Measles virus , Measles , Phylogeny , Humans , Measles virus/genetics , Measles virus/immunology , Measles virus/isolation & purification , Measles virus/classification , Measles/epidemiology , Measles/virology , Female , Male , Pakistan/epidemiology , Cross-Sectional Studies , Infant , Child, Preschool , Antibodies, Viral/blood , Immunoglobulin M/blood , Child , Adolescent , Adult , Measles Vaccine/immunology , Molecular Epidemiology , Young Adult , Prevalence , Seroepidemiologic Studies , Middle Aged
10.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329336

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Subject(s)
Adenosine Monophosphate , Alanine , Measles virus , Measles , Subacute Sclerosing Panencephalitis , Viral Proteins , Child, Preschool , Humans , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Autopsy , Brain/metabolism , Brain/pathology , Brain/virology , Disease Progression , Fatal Outcome , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Measles/complications , Measles/drug therapy , Measles/virology , Measles virus/drug effects , Measles virus/genetics , Measles virus/metabolism , Mutant Proteins/analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Quality of Life , RNA, Viral/analysis , RNA, Viral/genetics , Subacute Sclerosing Panencephalitis/drug therapy , Subacute Sclerosing Panencephalitis/etiology , Subacute Sclerosing Panencephalitis/virology , Viral Proteins/analysis , Viral Proteins/genetics , Viral Proteins/metabolism
11.
J Virol ; 97(10): e0105123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37732787

ABSTRACT

IMPORTANCE: For many years, measles virus (MeV) was assumed to first enter the host via the apical surface of airway epithelial cells and subsequently spread systemically. We and others reported that MeV has an overwhelming preference for entry at the basolateral surface of airway epithelial cells, which led to a fundamental new understanding of how MeV enters a human host. This unexpected observation using well-differentiated primary cultures of airway epithelia from human donors contradicted previous studies using immortalized cultured cells. Here, we show that appropriate differentiation and cell morphology of primary human airway epithelial cells are critical to recapitulate MeV infection patterns and pathogenesis of the in vivo airways. By simply culturing primary cells in media containing serum or passaging primary cultures, erroneous results quickly emerge. These results have broad implications for data interpretation related to respiratory virus infection, spread, and release from human airway epithelial cells.


Subject(s)
Cells, Cultured , Epithelial Cells , Measles virus , Measles , Respiratory System , Humans , Epithelial Cells/virology , Epithelium , Measles/virology , Respiratory System/cytology
12.
J Virol ; 96(22): e0131922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36300942

ABSTRACT

Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.


Subject(s)
Exoribonucleases , Measles , Microtubule-Associated Proteins , Virus Replication , Humans , eIF-2 Kinase/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Measles/genetics , Measles/virology , Measles virus/genetics , Measles virus/physiology , Microtubule-Associated Proteins/metabolism , Protein Kinases/metabolism , Proviruses/genetics , RNA, Double-Stranded , Inclusion Bodies, Viral
13.
PLoS One ; 17(2): e0263712, 2022.
Article in English | MEDLINE | ID: mdl-35176050

ABSTRACT

The incidence of vaccine preventable disease in Pakistan remains high despite a long-standing Expanded Program on Immunization (EPI). We describe vaccine completeness, timeliness and determinants of coverage from a remote rural cohort (2012-2014). Vaccination histories were taken from EPI records. Vaccination was complete if all doses were received according to the EPI schedule and timely if doses were not ≥3 days early or ≥ 28 days late. Three models are presented: a multivariable logistic regression of household demographic and socioeconomic factors associated with complete vaccination, a multivariable mixed effects logistic regression assessing whether or not the vaccine was administered late (versus on-time), and a mixed effects multivariable Poisson regression model analysing the interval (in days) between vaccine doses. Of 959 enrolled children with full vaccination histories, 88.2 and 65.1% were fully vaccinated following either the pentavalent or DPT/HBV schedules if measles was excluded; coverage dropped to 50.0 and 27.1% when both doses of measles were included. Sixty-four (6.7%) were unvaccinated. Coverage and timeliness declined with subsequent doses. Migrating into the village after 1995 (95%CI 1.88 to 5.17) was associated with late vaccination. Being male, having an older father, and having parents with at least some formal education reduced the likelihood of a late dose. The interval between doses was consistent at 5 weeks (compared with the 4 weeks recommended by EPI). None of the socio-demographic variables were related to the likelihood of receiving full coverage. Vaccine coverage in Oshikhandass was higher than national averages. Measles vaccine coverage and timeliness were low; special consideration should be paid to this vaccine. The local vaccination schedule differed from the EPI, but the consistency suggests good local administration.


Subject(s)
Immunization Programs/standards , Immunization Schedule , Measles Vaccine/administration & dosage , Measles/prevention & control , Socioeconomic Factors , Vaccination Coverage/statistics & numerical data , Vaccination/statistics & numerical data , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Measles/epidemiology , Measles/virology , Morbillivirus/drug effects , Morbillivirus/isolation & purification , Pakistan/epidemiology
14.
Lancet ; 399(10325): 678-690, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35093206

ABSTRACT

Measles is a highly contagious, potentially fatal, but vaccine-preventable disease caused by measles virus. Symptoms include fever, maculopapular rash, and at least one of cough, coryza, or conjunctivitis, although vaccinated individuals can have milder or even no symptoms. Laboratory diagnosis relies largely on the detection of specific IgM antibodies in serum, dried blood spots, or oral fluid, or the detection of viral RNA in throat or nasopharyngeal swabs, urine, or oral fluid. Complications can affect many organs and often include otitis media, laryngotracheobronchitis, pneumonia, stomatitis, and diarrhoea. Neurological complications are uncommon but serious, and can occur during or soon after the acute disease (eg, acute disseminated encephalomyelitis) or months or even years later (eg, measles inclusion body encephalitis and subacute sclerosing panencephalitis). Patient management mainly involves supportive therapy, such as vitamin A supplementation, monitoring for and treatment of secondary bacterial infections with antibiotics, and rehydration in the case of severe diarrhoea. There is no specific antiviral therapy for the treatment of measles, and disease control largely depends on prevention. However, despite the availability of a safe and effective vaccine, measles is still endemic in many countries and causes considerable morbidity and mortality, especially among children in resource-poor settings. The low case numbers reported in 2020, after a worldwide resurgence of measles between 2017 and 2019, have to be interpreted cautiously, owing to the effect of the COVID-19 pandemic on disease surveillance. Disrupted vaccination activities during the pandemic increase the potential for another resurgence of measles in the near future, and effective, timely catch-up vaccination campaigns, strong commitment and leadership, and sufficient resources will be required to mitigate this threat.


Subject(s)
COVID-19/epidemiology , Endemic Diseases/prevention & control , Mass Vaccination/organization & administration , Measles Vaccine/administration & dosage , Measles/prevention & control , COVID-19/prevention & control , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Endemic Diseases/statistics & numerical data , Humans , Mass Vaccination/standards , Mass Vaccination/statistics & numerical data , Measles/epidemiology , Measles/immunology , Measles/virology , Measles virus/immunology , Measles virus/pathogenicity , Pandemics/prevention & control
15.
J Virol ; 96(3): e0194921, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34788082

ABSTRACT

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, usually causes acute febrile illness with skin rash but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We recently showed that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, and SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here, we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. IMPORTANCE Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis-acting fusion triggering by host factors.


Subject(s)
Cell Adhesion Molecule-1/metabolism , Giant Cells/virology , Hemagglutinins, Viral/metabolism , Host-Pathogen Interactions , Measles virus/physiology , Measles/metabolism , Measles/virology , Animals , Brain/metabolism , Brain/virology , Cell Adhesion Molecule-1/genetics , Cells, Cultured , Cricetinae , Models, Biological , Protein Binding , Protein Isoforms , Viral Fusion Proteins/metabolism
16.
J Med Virol ; 94(2): 521-530, 2022 02.
Article in English | MEDLINE | ID: mdl-34761827

ABSTRACT

Measles is one of the most infectious diseases of humans. It is caused by the measles virus (MeV) and can lead to serious illness, lifelong complications, and even death. Whole-genome sequencing (WGS) is now available to study molecular epidemiology and identify MeV transmission pathways. In the present study, WGS of 23 MeV strains of genotype H1, collected in Mainland China between 2006 and 2018, were generated and compared to 31 WGSs from the public domain to analyze genomic characteristics, evolutionary rates and date of emergence of H1 genotype. The noncoding region between M and F protein genes (M/F NCR) was the most variable region throughout the genome. Although the nucleotide substitution rate of H1 WGS was around 0.75 × 10-3 substitution per site per year, the M/F NCR had an evolutionary rate three times higher, with 2.44 × 10-3 substitution per site per year. Phylogenetic analysis identified three distinct genetic groups. The Time of the Most Recent Common Ancestor (TMRCA) of H1 genotype was estimated at approximately 1988, while the first genetic group appeared around 1995 followed by two other genetic groups in 1999-2002. Bayesian skyline plot showed that the genetic diversity of the H1 genotype remained stable even though the number of MeV cases decreased 50 times between 2014 (52 628) and 2020 (993). The current coronavirus disease 2019 (COVID-19) pandemic might have some effect on the measles epidemic and further studies will be necessary to assess the genetic diversity of the H1 genotype in a post-COVID area.


Subject(s)
Evolution, Molecular , Genome, Viral/genetics , Measles virus/genetics , China/epidemiology , Genes, Viral/genetics , Genetic Variation , Genomics , Genotype , Humans , Measles/epidemiology , Measles/virology , Measles virus/classification , Phylogeny , RNA, Viral/genetics
17.
PLoS One ; 16(12): e0259877, 2021.
Article in English | MEDLINE | ID: mdl-34941890

ABSTRACT

The shape of phylogenetic trees can be used to gain evolutionary insights. A tree's shape specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic distance between branching events; well-known measures of tree shape include the Colless and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network science has become an important paradigm for describing structural features of networks and using them to understand complex systems, ranging from protein interactions to social systems. Network science is thus a potential source of many novel ways to characterize tree shape, as trees are also networks. Here, we tailor tools from network science, including diameter, average path length, and betweenness, closeness, and eigenvector centrality, to summarize phylogenetic tree shapes. We thereby propose tree shape summaries that are complementary to both asymmetry and the frequencies of small configurations. These new statistics can be computed in linear time and scale well to describe the shapes of large trees. We apply these statistics, alongside some conventional tree statistics, to phylogenetic trees from three very different viruses (HIV, dengue fever and measles), from the same virus in different epidemiological scenarios (influenza A and HIV) and from simulation models known to produce trees with different shapes. Using mutual information and supervised learning algorithms, we find that the statistics adapted from network science perform as well as or better than conventional statistics. We describe their distributions and prove some basic results about their extreme values in a tree. We conclude that network science-based tree shape summaries are a promising addition to the toolkit of tree shape features. All our shape summaries, as well as functions to select the most discriminating ones for two sets of trees, are freely available as an R package at http://github.com/Leonardini/treeCentrality.


Subject(s)
Computational Biology/methods , Decision Trees , Virus Diseases/virology , Viruses/classification , Algorithms , Data Interpretation, Statistical , Dengue/epidemiology , Dengue/virology , Dengue Virus/classification , HIV Infections/epidemiology , HIV Infections/virology , HIV-1/classification , Humans , Measles/epidemiology , Measles/virology , Measles virus/classification , Phylogeny , Software , Virus Diseases/epidemiology
18.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34696400

ABSTRACT

Measles virus (MeV) genotype B3 is one globally significant circulating genotype. Here, we present a systematic description of long-term evolutionary characterizations of the MeV genotype B3's hemagglutinin (H) gene in the elimination era. Our results show that the B3 H gene can be divided into two main sub-genotypes, and the highest intra-genotypic diversity was observed in 2004. MeV genotype B3's H gene diverged in 1976; its overall nucleotide substitution rate is estimated to be 5.697 × 10-4 substitutions/site/year, and is slowing down. The amino acid substitution rate of genotype B3's H gene is also decreasing, and the mean effective population size has been in a downward trend since 2000. Selection pressure analysis only recognized a few sites under positive selection, and the number of positive selection sites is getting smaller. All of these observations may reveal that genotype B3's H gene is not under strong selection pressure, and is becoming increasingly conservative. MeV H-gene or whole-genome sequencing should be routine, so as to better elucidate the molecular epidemiology of MeV in the future.


Subject(s)
Hemagglutinins, Viral/genetics , Measles virus/genetics , China , Evolution, Molecular , Genetic Variation/genetics , Genotype , Hemagglutinins/genetics , Humans , Measles/virology , Molecular Epidemiology/methods , Phylogeny , Sequence Analysis, DNA/methods
19.
PLoS One ; 16(9): e0255663, 2021.
Article in English | MEDLINE | ID: mdl-34506497

ABSTRACT

Measles outbreaks escalated globally despite worldwide elimination efforts. Molecular epidemiological investigations utilizing partial measles virus (MeV) genomes are challenged by reduction in global genotypes and low evolutionary rates. Greater resolution was reached using MeV complete genomes, however time and costs limit the application to numerous samples. We developed an approach to unbiasedly sequence complete MeV genomes directly from patient urine samples. Samples were enriched for MeV using filtration or nucleases and the minimal number of sequence reads to allocate per sample based on its MeV content was assessed using in-silico reduction of sequencing depth. Application of limited-resource sequencing to treated MeV-positive samples demonstrated that 1-5 million sequences for samples with high/medium MeV quantities and 10-15 million sequences for samples with lower MeV quantities are sufficient to obtain >98% MeV genome coverage and over X50 average depth. This approach enables real-time high-resolution molecular epidemiological investigations of large-scale MeV outbreaks.


Subject(s)
Disease Outbreaks/statistics & numerical data , Genome, Viral , Measles virus/classification , Measles virus/genetics , Measles/epidemiology , RNA, Viral/genetics , Sequence Analysis, DNA/methods , Genotype , Humans , Israel/epidemiology , Measles/genetics , Measles/virology , Measles virus/isolation & purification , Molecular Epidemiology , Phylogeny
20.
PLoS Pathog ; 17(8): e1009458, 2021 08.
Article in English | MEDLINE | ID: mdl-34383863

ABSTRACT

Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2'-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV's strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.


Subject(s)
Epithelial Cells/virology , Macrophages/virology , Measles virus/pathogenicity , Measles/virology , Respiratory System/virology , Virus Internalization , Virus Replication , Cells, Cultured , Epithelial Cells/metabolism , Humans , Macrophages/metabolism , Measles/genetics , Measles/metabolism , RNA-Seq , Respiratory System/metabolism , Single-Cell Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...