Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.975
Filter
1.
Int J Biol Macromol ; 268(Pt 2): 131946, 2024 May.
Article in English | MEDLINE | ID: mdl-38692545

ABSTRACT

The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.


Subject(s)
Cellulose , Elastomers , Electric Conductivity , Rubber , Wearable Electronic Devices , Elastomers/chemistry , Cellulose/chemistry , Rubber/chemistry , Humans , Nanocomposites/chemistry , Nanoparticles/chemistry , Mechanical Phenomena , Aniline Compounds/chemistry
2.
Med Eng Phys ; 127: 104166, 2024 May.
Article in English | MEDLINE | ID: mdl-38692765

ABSTRACT

A profound investigation of the interaction mechanics between blood vessels and guidewires is necessary to achieve safe intervention. An interactive force model between guidewires and blood vessels is established based on cardiovascular fluid dynamics theory and contact mechanics, considering two intervention phases (straight intervention and contact intervention at a corner named "J-vessel"). The contributing factors of the force model, including intervention conditions, guidewire characteristics, and intravascular environment, are analyzed. A series of experiments were performed to validate the availability of the interactive force model and explore the effects of influential factors on intervention force. The intervention force data were collected using a 2-DOF mechanical testing system instrumented with a force sensor. The guidewire diameter and material were found to significantly impact the intervention force. Additionally, the intervention force was influenced by factors such as blood viscosity, blood vessel wall thickness, blood flow velocity, as well as the interventional velocity and interventional mode. The experiment of the intervention in a coronary artery physical vascular model confirms the practicality validation of the predicted force model and can provide an optimized interventional strategy for vascular interventional surgery. The enhanced intervention strategy has resulted in a considerable reduction of approximately 21.97 % in the force exerted on blood vessels, effectively minimizing the potential for complications associated with the interventional surgery.


Subject(s)
Mechanical Phenomena , Blood Vessels/physiology , Models, Cardiovascular , Hydrodynamics , Humans , Biomechanical Phenomena , Models, Biological , Coronary Vessels/physiology
3.
Med Eng Phys ; 127: 104168, 2024 May.
Article in English | MEDLINE | ID: mdl-38692764

ABSTRACT

Skin color observation provides a simple and non-invasive method to estimate the health status of patients. Capillary Refill Time (CRT) is widely used as an indicator of pathophysiological conditions, especially in emergency patients. While the measurement of CRT is easy to perform, its evaluation is highly subjective. This study proposes a method to aid quantified CRT measurement using an RGB camera. The procedure consists in applying finger compression to the forearm, and the CRT is calculated based on the skin color change after the pressure release. We estimate compression applied by a finger from its fingernail color change during compression. Our study shows a step towards camera-based quantitative CRT for untrained individuals.


Subject(s)
Capillaries , Fingers , Fingers/blood supply , Fingers/physiology , Humans , Capillaries/physiology , Capillaries/diagnostic imaging , Time Factors , Pressure , Male , Adult , Mechanical Phenomena , Female
4.
Biomed Eng Online ; 23(1): 46, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741182

ABSTRACT

BACKGROUND: Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error ( χ 2 ) of LV myocardial strain, strain rate, and cavity volume. RESULTS: A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients ( χ 2 < 1.6), but minimum parameter reproducibility was poor ( ICC min = 0.01). Iterative reduction yielded a reproducible ( ICC min = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs ( χ 2 < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05). CONCLUSIONS: By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.


Subject(s)
Heart Ventricles , Image Processing, Computer-Assisted , Humans , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Image Processing, Computer-Assisted/methods , Bundle-Branch Block/diagnostic imaging , Bundle-Branch Block/physiopathology , Biomechanical Phenomena , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Mechanical Phenomena , Male , Female , Middle Aged , Models, Cardiovascular
5.
Int J Biol Macromol ; 268(Pt 1): 131464, 2024 May.
Article in English | MEDLINE | ID: mdl-38702248

ABSTRACT

Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.


Subject(s)
Antioxidants , Food Packaging , Manihot , Plant Extracts , Polyvinyl Alcohol , Starch , Food Packaging/methods , Polyvinyl Alcohol/chemistry , Starch/chemistry , Starch/analogs & derivatives , Antioxidants/chemistry , Manihot/chemistry , Plant Extracts/chemistry , Ilex paraguariensis/chemistry , Tensile Strength , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena
6.
J Mech Behav Biomed Mater ; 155: 106552, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701678

ABSTRACT

This study aimed to evaluate and compare the mechanical properties of dental training teeth with subtractive and additive computer-aided design/computer-aided manufacturing (CAD/CAM) materials used to fabricate dental simulation models. Therefore, the three-axis load generated during cutting movements, including drilling and milling performed using a dental handpiece, was measured and compared. The samples were cut vertically downward by 1.5 mm, horizontally by 6 mm, and vertically upward at a constant speed (1 mm/s), while the rotational speed of the bur was maintained at 200,000 rotations per minute. A three-axis load cell was used to measure the X-, Y-, and Z-axis loads on the specimen. The median value of the X-, Y-, and Z-axis measurements and the resultant load during the vertical-downward, horizontal, and vertical-upward movements were compared using a one-way analysis of variance and Tukey's post hoc test. For vertical downward movement, the drilling force of the dental training teeth was lower than that of Vita Enamic® and similar to that of Lava™ Ultimate. In contrast to subtractive CAD/CAM blocks, the drilling force of the dental training teeth was higher than that of 3D-printed resin blocks. Regarding horizontal movement, the milling force of dental training teeth was lower than that of Vita Enamic®. In contrast, the milling force of Nissin was similar to that of Lava™ Ultimate, while that of Frasaco was lower. Furthermore, compared to additive CAD/CAM blocks, the milling force of the dental training teeth was higher than that of 3D-printed resin blocks. Regarding vertical upward movement, the resultant loads of dental training teeth was lower than that of Vita Enamic®. Similarly, the resultant load of Nissin was similar to that of Lava™ Ultimate, while that of Frasaco was lower. Additionally, compared to additive CAD/CAM blocks, the resultant loads of the dental training teeth were similar to those of the 3D-printed resin blocks.


Subject(s)
Computer-Aided Design , Mechanical Phenomena , Materials Testing , Mechanical Tests , Tooth/physiology
7.
J Mech Behav Biomed Mater ; 155: 106565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718723

ABSTRACT

OBJECTIVES: Dental erosion in patients with gastroesophageal reflux disease (GERD) is a current and frequent condition that may compromise the mechanical properties and clinical durability of resin-based composites (RBCs). This study assessed the mechanical properties of conventional and computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs subsequent to simulated gastric acid aging. MATERIALS AND METHOD: Three conventional and three CAD/CAM composites were assessed. They were divided into an experimental group (exposed to simulated gastric acid aging) and a control group (no aging). Both groups were analyzed for Vickers microhardness (VHN), wear and flexural strength over a period of six months. The failure rate probability for each RBC was calculated through the Weibull cumulative distribution function (m). Statistical analysis was conducted using repeated measures ANOVA, 3-way ANOVA, a non-parametric Kruskal-Wallis and U Mann-Whitney tests (α = 0.05). RESULTS: The mechanical properties of all the RBCs dropped significantly after aging (p < 0.05). Lower VHN and flexural strength values, along with greater wear values were evident in the experimental groups, though the effects of the treatment varied between RBCs. The Weibull m of all the RBCs decreased over time. CONCLUSION: Conventional RBCs might show greater reduction in mechanical properties compared to CAD/CAM RBCs when exposed to gastric acid attack. Thus, CAD/CAM composites may represent a suitable choice for the treatment of patients presenting erosive issues.


Subject(s)
Composite Resins , Computer-Aided Design , Gastric Acid , Materials Testing , Gastric Acid/chemistry , Gastric Acid/metabolism , Composite Resins/chemistry , Mechanical Phenomena , Mechanical Tests , Hardness , Humans
8.
J Mech Behav Biomed Mater ; 155: 106576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744119

ABSTRACT

Skeletal muscle and adipose tissue are characterized by unique structural features finely tuned to meet specific functional demands. In this study, we investigated the passive mechanical properties of soleus (SOL), extensor digitorum longus (EDL) and diaphragm (DIA) muscles, as well as subcutaneous (SAT), visceral (VAT) and brown (BAT) adipose tissues from 13 C57BL/6J mice. Thereto, alongside stress-relaxation assessments we subjected isolated muscles and adipose tissues (ATs) to force-extension tests up to 10% and 30% of their optimal length, respectively. Peak passive stress was highest in the DIA, followed by the SOL and lowest in the EDL (p < 0.05). SOL displayed also the highest Young's modulus and hysteresis among muscles (p < 0.05). BAT demonstrated highest peak passive stress and Young's modulus followed by VAT (p < 0.05), while SAT showed the highest hysteresis (p < 0.05). When comparing data across all six biological specimens at fixed passive force intervals (i.e., 20-40 and 50-70 mN), skeletal muscles exhibited significantly higher peak stresses and strains than ATs (p < 0.05). Young's modulus was higher in skeletal muscles than in ATs (p < 0.05). Muscle specimens exhibited slower force relaxation in the first phase compared to ATs (p < 0.05), while there was no significant difference in behavior between muscles and AT in the second phase of relaxation. The study revealed distinctive mechanical behaviors specific to different tissues, and even between different muscles and ATs. These variations in mechanical properties are likely such to optimize the specific functions performed by each biological tissue.


Subject(s)
Adipose Tissue , Mice, Inbred C57BL , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/physiology , Biomechanical Phenomena , Mechanical Phenomena , Male , Stress, Mechanical , Elastic Modulus , Mechanical Tests , Materials Testing
9.
J Mech Behav Biomed Mater ; 155: 106573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744117

ABSTRACT

The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.


Subject(s)
Polyurethanes , Polyurethanes/chemistry , Materials Testing , Algorithms , Blood Vessel Prosthesis , Image Processing, Computer-Assisted , Porosity , Tissue Scaffolds/chemistry , Mechanical Phenomena , Electricity
10.
J Mech Behav Biomed Mater ; 155: 106579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749266

ABSTRACT

Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.


Subject(s)
Alginates , Biocompatible Materials , Materials Testing , Polyvinyl Alcohol , Silicon Compounds , Staphylococcus aureus , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Silicon Compounds/chemistry , Silicon Compounds/pharmacology , Staphylococcus aureus/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Mechanical Phenomena , Tissue Scaffolds/chemistry , Humans
11.
J Mech Behav Biomed Mater ; 155: 106564, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749267

ABSTRACT

Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 µm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa and σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1-e-0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.


Subject(s)
Materials Testing , Nanofibers , Polyesters , Stress, Mechanical , Water , Polyesters/chemistry , Nanofibers/chemistry , Water/chemistry , Mechanical Phenomena , Tensile Strength , Elastic Modulus , Viscosity , Biocompatible Materials/chemistry
12.
J Mech Behav Biomed Mater ; 155: 106572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754153

ABSTRACT

The personalisation of finite element models is an important problem in the biomechanical fields where subject-specific analyses are fundamental, particularly in studying soft tissue mechanics. The personalisation includes the choice of the constitutive law of the model's material, as well as the choice of the material parameters. In vivo identification of the material properties of soft tissues is challenging considering the complex behaviour of soft tissues that are, among other things, non-linear hyperelastic and heterogeneous. Hybrid experimental-numerical methods combining in vivo indentations and inverse finite element analyses are common to identify these material parameters. Yet, the uniqueness and the uncertainty of the multi-material hyperelastic model have not been evaluated. This study presents a sensitivity analysis performed on synthetic indentation data to investigate the identification uncertainties of the material parameters in a bi-material thigh phantom. Synthetic numerical data, used to replace experimental measurements, considered several measurement modalities: indenter force and displacement, stereo-camera 3D digital image correlation of the indented surface, and ultrasound B-mode images. A finite element model of the indentation was designed with either Ogden-Moerman or Mooney-Rivlin constitutive laws for both materials. The parameters' identifiability (i.e. the possibility of converging to a unique parameter set within an acceptable margin of error) was assessed with various cost functions formulated using the different synthetic data sets. The results underline the need for multiple experimental modalities to reduce the uncertainty of the identified parameters. Additionally, the experimental error can impede the identification of a unique parameter set, and the cost function depends on the constitutive law. This study highlights the need for sensitivity analyses before the design of the experimental protocol. Such studies can also be used to define the acceptable range of errors in the experimental measurement. Eventually, the impact of the evaluated uncertainty of the identified parameters should be further investigated according to the purpose of the finite element modelling.


Subject(s)
Finite Element Analysis , Materials Testing , Biomechanical Phenomena , Mechanical Phenomena , Mechanical Tests , Elasticity
13.
Int J Biol Macromol ; 269(Pt 1): 131951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710253

ABSTRACT

Bacterial nanocellulose (BNC) is a promising material for heart valve prostheses. However, its low strength properties limit its applicability in cardiovascular surgery. To overcome these limitations, the mechanical properties of BNC can be improved through modifications. The aim of the research was to investigate the extent to which the mechanical properties of BNC can be altered by modifying its structure during its production and after synthesis. The study presents the results of various analyses, including tensile tests, nanoindentation tests, X-ray diffraction (XRD) tests, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy, conducted on BNC chemically modified in situ with hyaluronic acid (BNC/HA) and physically modified ex situ through a dehydration/rehydration process (BNC 25DR, BNC105DR, BNC FDR and BNC/HA 25DR, BNC/HA 105DR, BNC/HA FDR). The results demonstrate that both chemical and physical modifications can effectively shape the mechanical properties of BNC. These modifications induce changes in the crystalline structure, pore size and distribution, and residual stresses of BNC. Results show the effect of the crystalline structure of BNC on its mechanical properties. There is correlation between hardness and Young's modulus and Iα/Iß index for BNC/HA and between creep rate of BNC/HA, and Young's modulus for BNC vs Iα/Iß index.


Subject(s)
Cellulose , Cellulose/chemistry , Heart Valve Prosthesis , Tensile Strength , X-Ray Diffraction , Nanostructures/chemistry , Spectroscopy, Fourier Transform Infrared , Materials Testing , Hyaluronic Acid/chemistry , Mechanical Phenomena , Heart Valves/chemistry
14.
Int J Biol Macromol ; 269(Pt 2): 132141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723809

ABSTRACT

To enhance the flame retardancy and mechanical performance of PLA, a polyelectrolyte complex predicated on lignin was obtained by electrostatic mutual adsorption of ammonium polyphosphate (APP), polyethyleneimine (PEI), and copper ions as raw materials. The FT-IR spectra and EDX analysis confirmed the successful synthesis of a lignin-based flame retardant hybrid (APL-Cu2+) containing copper, phosphorus, and nitrogen elements. The combustion test results showed that the peak heat release rate and total heat release of the PLA composite containing 12 wt% APL-Cu2+ were decreased by 15.1 % and 18.2 %, respectively, as compared to those of pure PLA. The char residue morphology observation revealed that the addition of APL-Cu2+ could promote the formation of a highly dense and stable graphitized char layer, while TG-MS detected the emission of refractory gases such as ammonia gas, carbon dioxide, and water during combustion. The strong hydrogen bonding between APL-Cu2+ and the PLA matrix kept the composite maintaining good strength and toughness. The tensile strength and impact strength of PLA/6APL-Cu2+ increased by 4.73 % and 65.71 %, respectively, due to its high crystallinity and good interfacial compatibility. This work provides a feasible method to develop biobased flame retardant hybrids for PLA composites with better fire safety and improved mechanical properties.


Subject(s)
Copper , Flame Retardants , Lignin , Polyesters , Lignin/chemistry , Copper/chemistry , Polyesters/chemistry , Fires/prevention & control , Mechanical Phenomena , Tensile Strength , Spectroscopy, Fourier Transform Infrared , Polyethyleneimine/chemistry
15.
J Mech Behav Biomed Mater ; 155: 106580, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759588

ABSTRACT

OBJECTIVES: To investigate the influence of the zirconia and sintering parameters on the optical and mechanical properties. METHODS: Three zirconia materials (3/4Y-TZP, 4Y-TZP, 3Y-TZP) were high-speed (HSS), speed (SS) or conventionally (CS) sintered. Disc-shaped specimens nested in 4 vertical layers of the blank were examined for grain size (GS), crystal phases (c/t'/t/m-phase), translucency (T), and biaxial flexural strength. Fracture load (FL) of three-unit fixed dental prostheses was determined initially and after thermomechanical aging. Fracture types were classified, and data statistically analyzed. RESULTS: 4Y-TZP showed a higher amount of c + t'-phase and lower amount of t-phase, and higher optical and lower mechanical properties than 3Y-TZP. In all materials, T declined from Layer 1 to 4. 3/4Y-TZP showed the highest FL, followed by 3Y-TZP, while 4Y-TZP showed the lowest. In 4Y-TZP, the sintering parameters exercised a direct impact on GS and T, while mechanical properties were largely unaffected. The sintering parameters showed a varying influence on 3Y-TZP. Thermomechanical aging resulted in comparable or higher FL. CONCLUSION: 3/4Y-TZP presenting the highest FL underscores the principle of using strength-gradient multi-layer blanks to profit from high optical properties in the incisal area, while ensuring high mechanical properties in the lower areas subject to tensile forces. With all groups exceeding maximum bite forces, the examined three-unit FDPs showed promising long-term mechanical properties.


Subject(s)
Flexural Strength , Materials Testing , Zirconium , Zirconium/chemistry , Mechanical Phenomena , Particle Size , Stress, Mechanical , Optical Phenomena
16.
J Mech Behav Biomed Mater ; 155: 106583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762970

ABSTRACT

In this article we discuss the effective properties of composites containing a crosslinked athermal fiber network embedded in a continuum elastic matrix, which are representative for a broad range of biological materials. The goal is to evaluate the accuracy of the widely used biomechanics parallel coupling model in which the tissue response is defined as the additive superposition of the network and matrix contributions, and the interaction of the two components is neglected. To this end, explicit, fully coupled models are used to evaluate the linear and non-linear response of the composite. It is observed that in the small strain, linear regime the parallel model leads to errors when the ratio of the individual stiffnesses of the two components is in the range 0.1-10, and the error increases as the matrix approaches the incompressible limit. The data presented can be used to correct the parallel model to improve the accuracy of the overall stiffness prediction. In the non-linear large deformation regime linear superposition does not apply. The data shows that the matrix reduces the stiffening rate of the network, and the response is softer than that predicted by the parallel model. The correction proposed for the linear regime mitigates to a large extent the error in the non-linear regime as well, provided the matrix Poisson ratio is not close to 0.5. The special case in which the matrix is rendered auxetic is also evaluated and it is seen that the auxeticity of the matrix may compensate the stiffening introduced by the network, leading to a composite with linear elastic response over a broad range of strains.


Subject(s)
Biocompatible Materials , Biocompatible Materials/chemistry , Biomechanical Phenomena , Stress, Mechanical , Mechanical Phenomena , Materials Testing , Elasticity
17.
PLoS One ; 19(4): e0299016, 2024.
Article in English | MEDLINE | ID: mdl-38625886

ABSTRACT

The measurement of cellular forces, which reflect crucial biological attributes, has the potential to replace conventional cell assessment methods, such as morphology, proliferation, and molecular expression analysis, in medical cell diagnosis and cell culture studies. In medical cell evaluations, force inference techniques have gained prominence due to their non-invasiveness and lack of requirement for specialized equipment. Among those techniques, the method proposed by Ishihara et al., which estimates forces in densely packed cells based only on cell geometry, is a promising method. However, its applicability range of this method has not been fully established. In this study, we employed a two-dimensional vertex model to numerically assess the applicability of this method on homogeneous and heterogeneous cells. Our comparisons between the true values from numerical simulations and the estimated values from the inference method revealed a significant correlation between estimation accuracy and cell roundness in systems of homogeneous cell. Moreover, the method demonstrated efficient force estimations in heterogeneous-cell systems. These findings may be useful when the force inference method is employed to evaluate medical cells.


Subject(s)
Mechanical Phenomena , Biomechanical Phenomena
18.
J Mech Behav Biomed Mater ; 155: 106556, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676972

ABSTRACT

This study assessed the mechanical properties and surface characteristics of dental prosthetic acrylic resin fabricated by 3D printing, comparing it with subtractive, pressing, and molding techniques. Bar-shaped specimens (N= 90; 65 × 10 × 3.3 mm; ISO:207951) were prepared and assigned into six groups: PRINT (3D printing vis stereolithography with PriZma 3D Bio Denture, Makertech Labs); SUB (subtractive manufacturing with Vipiblock Trilux, Vipi); PRESS Base (pressing using muffle with Thermo Vipi Wave, Vipi for base); PRESS Tooth (pressing with Onda-cryl, Clássico for tooth); MOLD Base (molding using addition silicone with Vipi Flash, Vipi for base); and MOLD Tooth (molding with Dencor, Clássico for tooth). Monotonic flexural strength (FS) and elastic modulus (E) were measured using a three-point bending approach (n= 5) on a universal testing machine at a crosshead speed of 5 mm/min. Fatigue testing (n= 10) followed similar geometry and settings, with a frequency of 2 Hz, initial stress level at 20 MPa, and stress increments of 5 MPa every 2,500 cycles. Surface roughness (n= 10) was assessed through profilometry, and fractographic and topographic analyses were conducted. Statistical analyses included One-Way ANOVA for monotonic FS, roughness, and E, along with Kaplan-Meier with Mantel-Cox post-hoc and Weibull analysis for fatigue strength. PRINT showed lower monotonic FS than the SUB and PRESS Tooth but comparable fatigue strength to these groups and superior to PRESS Base and MOLD (Base and Tooth) groups. All groups had similar Weibull moduli. Surface roughness of the PRINT group was comparable to most techniques but higher than the PRESS Tooth group. Fractographic analysis revealed fractures originating from surface defects under tensile stress, with SEM showing scratch patterns in all groups except PRINT, which had a more uniform surface. Despite its lower monotonic strength, 3D printed resin demonstrated comparable fatigue strength to subtractive and pressing methods and similar surface roughness to most methods, indicating its potential as a viable option for dental prosthesis.


Subject(s)
Acrylic Resins , Materials Testing , Printing, Three-Dimensional , Surface Properties , Acrylic Resins/chemistry , Stress, Mechanical , Mechanical Tests , Elastic Modulus , Mechanical Phenomena
19.
J Mech Behav Biomed Mater ; 155: 106541, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678746

ABSTRACT

Development of novel medical devices for the treatment of musculoskeletal pain associated with neuro-muscular trigger points requires a model for relating the mechanical responses of in vivo biological tissues to applied palliative physical pressures and a method to design treatments for optimal effects. It is reasonable to hypothesize that the efficacy of therapeutic treatment is proportional to the maximum tensile strain at trigger point locations. This work presents modeling of the mechanical behavior of biological tissue structures and treatment simulations, supported by indentation experiments and finite element (FE) modeling. The steady-state indentation responses of the tissue structure of the posterior neck were measured with a testing device, and an FE model was constructed using a first-order Ogden hyperelastic material model and calibrated with the experimental data. The error between experimental and FE-generated displacement-load curves was minimized via a two-stage optimization process comprised of an Optimal Latin Hypercube design-of-experiments analysis and a Bayesian optimization loop. The optimized Ogden model had an initial shear modulus (µ) of 5.16 kPa and a deviatoric exponent (α) of 11.90. Another FE model was developed to simulate the deformation of the tissue structures in the posterior neck adjacent to the C3 vertebrae in response to indentation loading, in order to determine the optimal location and angle to apply an indentation force for maximum therapeutic benefit. The optimal location of indentation was determined to be 28° lateral from the sagittal plane along the surface of the skin, measured from the centerline of the spine, at an angle of 8° counterclockwise from the surface normal vector. The optimized spatial orientation of the indentation corresponded to the average of the maximum principal strain across the deep muscle region of the model.


Subject(s)
Finite Element Analysis , Materials Testing , Muscle, Skeletal , Muscle, Skeletal/physiology , Materials Testing/instrumentation , Mechanical Tests , Humans , Mechanical Phenomena , Biomechanical Phenomena , Models, Biological , Stress, Mechanical , Equipment and Supplies
20.
J Mech Behav Biomed Mater ; 155: 106563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678747

ABSTRACT

OBJECTIVES: The aim of the study was to investigate the impact of organic additives (binder, plasticizer, and the cross-linking ink) in the formulation of water-based feedstocks on the properties of a dental feldspathic glass-ceramic material developed for the slurry-based additive manufacturing technology "LSD-print." MATERIAL AND METHODS: Three water-based feldspathic feedstocks were produced to study the effects of polyvinyl alcohol (AC1) and poly (sodium 4-styrenesulfonate) (AC2) as binder systems. A feedstock without organic additives was tested as the control group (CG). Disc-shaped (n = 15) and bar (n = 7) specimens were slip-cast and characterized in the green and fired states. In the green state, density and flexural strength were measured. In the fired state, density, shrinkage, flexural strength (FS), Weibull modulus, fracture toughness (KIC), Martens parameters, and microstructure were analyzed. Disc-shaped and bar specimens were also cut from commercially available CAD/CAM blocks and used as a target reference (TR) for the fired state. RESULTS: In the green state, CG showed the highest bulk density but the lowest FS, while the highest FS in the green state was achieved with the addition of a cross-linking ink. After firing, no significant differences in density and a similar microstructure were observed for all slip-cast groups, indicating that almost complete densification could be achieved. The CAD/CAM specimens showed the highest mean FS, Weibull modulus, and KIC, with significant differences between some of the slip-cast groups. SIGNIFICANCE: These results suggest that the investigated feedstocks are promising candidates for the slurry-based additive manufacturing of restorations meeting the class 1a requirements according to DIN EN ISO 6871:2019-01.


Subject(s)
Ceramics , Materials Testing , Silicates , Ceramics/chemistry , Silicates/chemistry , Mechanical Phenomena , Flexural Strength , Physical Phenomena , Dental Materials/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...