Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 593
Filter
1.
Commun Biol ; 7(1): 722, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862688

ABSTRACT

The target of rapamycin complex 2 (TORC2) signaling is associated with plasma membrane (PM) integrity. In Saccharomyces cerevisiae, TORC2-Ypk1/2 signaling controls sphingolipid biosynthesis, and Ypk1/2 phosphorylation by TORC2 under PM stress conditions is increased in a Slm1/2-dependent manner, under which Slm1 is known to be released from an eisosome, a furrow-like invagination PM structure. However, it remains unsolved how the activation machinery of TORC2-Ypk1/2 signaling is regulated. Here we show that edelfosine, a synthetic lysophospholipid analog, inhibits the activation of TORC2-Ypk1/2 signaling, and the cell wall integrity (CWI) pathway is involved in this inhibitory effect. The activation of CWI pathway blocked the eisosome disassembly promoted by PM stress and the release of Slm1 from eisosomes. Constitutive activation of TORC2-Ypk1/2 signaling exhibited increased sensitivity to cell wall stress. We propose that the CWI pathway negatively regulates the TORC2-Ypk1/2 signaling, which is involved in the regulatory mechanism to ensure the proper stress response to cell wall damage.


Subject(s)
Cell Wall , Mechanistic Target of Rapamycin Complex 2 , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Cell Wall/metabolism , Cell Wall/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Phosphorylation , Protein Kinases , Protein Serine-Threonine Kinases
2.
Cell Commun Signal ; 22(1): 320, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862983

ABSTRACT

Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.


Subject(s)
Multiple Myeloma , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Animals , Molecular Targeted Therapy , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/pharmacology , Mechanistic Target of Rapamycin Complex 2/metabolism
3.
Cell Physiol Biochem ; 58(3): 250-272, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865588

ABSTRACT

BACKGROUND/AIMS: Motivated by the vacuolar proton pump's importance in cancer, we investigate the effects of proton pump inhibition on breast cancer cell migration and proliferation, F-actin polymerization, lamin A/C, heterochromatin, and ETV7 expressions, nuclear size and shape, and AKT/mTOR signaling. METHODS: Lowly metastatic MCF7 and highly metastatic MDA-MB-231 breast cancer cells were treated with 120 nM of proton pump inhibitor Bafilomycin A1 for 24 hours. Cell migration was studied with wound- scratch assays, ATP levels with a chemiluminescent assay; cell proliferation was quantified by a cell area expansion assay. Nuclear size and shape were determined using DAPI nuclear stain and fluorescence microscopy. The levels of F-actin, lamin A/C, heterochromatin, and ETV7 were quantified using both immunocytochemistry and western blots; p-mTORC1, p-mTORC2, mTOR, p-AKT, and AKT were measured by western blots. RESULTS: We reveal that proton pump inhibition reduces F-actin polymerization, cell migration, proliferation, and increases heterochromatin in both lowly and highly metastatic cells. Surprisingly, Bafilomycin decreases lamin A/C in both cell lines. Inhibition has different effects on ETV7 expression in lowly and highly metastatic cells, as well as nuclear area, perimeter, and circularity. Bafilomycin also significantly decreases p-mTORC1, p-MTORC2, and MTOR expression in both cell lines, whereas it significantly decreases p-AKT in lowly metastatic cells and surprisingly significantly increases p-AKT in highly metastatic cells. Our proton pump inhibition protocol reduces V-ATPase levels (~25%) within three hours. V-ATPase levels vary in time for both control and inhibited cells, and inhibition reduces cellular ATP. CONCLUSION: Proton pumps promote F-actin polymerization and decrease heterochromatin, facilitating invasion. These pumps also upregulate both mTORC1 and mTORC2, thus highlighting the relevance of vacuolar proton pumps as metastatic cancer targets.


Subject(s)
Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , Heterochromatin , Macrolides , Mechanistic Target of Rapamycin Complex 2 , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Vacuolar Proton-Translocating ATPases , Humans , Actins/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Signal Transduction/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Female , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Macrolides/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Cell Proliferation/drug effects , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Heterochromatin/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , MCF-7 Cells
4.
Clin Transl Med ; 14(5): e1686, 2024 May.
Article in English | MEDLINE | ID: mdl-38769658

ABSTRACT

BACKGROUND: Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS: The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS: Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS: Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.


Subject(s)
Fibrosis , Kidney Transplantation , Mechanistic Target of Rapamycin Complex 2 , Membrane Proteins , Mitophagy , Rapamycin-Insensitive Companion of mTOR Protein , Signal Transduction , Animals , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Mice , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Kidney Transplantation/adverse effects , Fibrosis/metabolism , Male , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Allografts , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Disease Models, Animal , Proto-Oncogene Proteins
5.
Mol Cancer ; 23(1): 105, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755661

ABSTRACT

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Subject(s)
Drug Resistance, Neoplasm , Mechanistic Target of Rapamycin Complex 2 , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Melanoma/genetics , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Drug Resistance, Neoplasm/genetics , Mice , Animals , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic , Mutation , Down-Regulation , Proteomics/methods
6.
Cell Signal ; 120: 111234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795810

ABSTRACT

Tumor dormancy is the underpinning for cancer relapse and chemoresistance, leading to massive cancer-related death in colorectal cancer (CRC). However, our comprehension of the mechanisms dictating tumor dormancy and strategies for eliminating dormant tumor cells remains restricted. In this study, we identified that collagen XVII (COL17A1), a hemidesmosomal transmembrane protein, can promote the dormancy of CRC cells. The upregulation of COL17A1 was observed to prolong quiescence periods and diminish drug susceptibility of CRC cells. Mechanistically, COL17A1 acts as a scaffold, enhancing the crosstalk between mTORC2 and Akt, thereby instigating the mTORC2-mediated dormant signaling. Notably, the activation of mTORC2 is contingent upon the intracellular domain of COL17A1, regardless of its ectodomain shedding. Our findings underscore a pivotal role of the COL17A1-mTORC2 axis in CRC dormancy, suggesting that mTORC2-specific inhibitors may hold therapeutic prospects for the eradication of dormant tumor cells.


Subject(s)
Collagen Type XVII , Colorectal Neoplasms , Mechanistic Target of Rapamycin Complex 2 , Non-Fibrillar Collagens , Signal Transduction , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Non-Fibrillar Collagens/metabolism , Non-Fibrillar Collagens/genetics , Cell Line, Tumor , Animals , Proto-Oncogene Proteins c-akt/metabolism , Autoantigens/metabolism , Mice , Mice, Nude , Cell Proliferation , Mice, Inbred BALB C
7.
Biochem Biophys Res Commun ; 717: 150045, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718572

ABSTRACT

The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.


Subject(s)
Down-Regulation , Mechanistic Target of Rapamycin Complex 2 , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ubiquitin-Protein Ligases , Ubiquitin , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
8.
Cell Rep ; 43(5): 114173, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700984

ABSTRACT

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Neurons , Organoids , PTEN Phosphohydrolase , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Organoids/metabolism , Neurons/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mutation/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Signal Transduction , Cell Proliferation , Regulatory-Associated Protein of mTOR/metabolism , Regulatory-Associated Protein of mTOR/genetics , Phenotype
9.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587072

ABSTRACT

The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.


Subject(s)
Endothelial Cells , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Rats , Aging , Endothelial Cells/metabolism , Integrin beta4/genetics , Integrin beta4/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Glycoproteins/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Signal Transduction
11.
Cells ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474373

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.


Subject(s)
Glioblastoma , Neoplastic Stem Cells , Sirolimus , Humans , Glioblastoma/metabolism , Intercellular Signaling Peptides and Proteins/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Neoplastic Stem Cells/metabolism
12.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481314

ABSTRACT

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/pathology , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , DNA Methylation , Phenotype , Brain Neoplasms/pathology , DNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Protein-Tyrosine Kinases/genetics
13.
Cell Commun Signal ; 22(1): 196, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539200

ABSTRACT

Polyploidy is typically described as the condition wherein a cell or organism has more than two complete sets of chromosomes. Occurrence of polyploidy is a naturally occurring phenomenon in the body's development and differentiation processes under normal physiological conditions. However, in pathological conditions, the occurrence of polyploidy is documented in numerous disorders, including cancer, aging and diabetes. Due to the frequent association that the polyploidy has with these pathologies and physiological process, understanding the cause and consequences of polyploidy would be beneficial to develop potential therapeutic applications. Many of the genetic and epigenetic alterations leading to cancer, diabetes and aging are linked to signaling pathways. Nonetheless, the specific signaling pathway associated with the cause and consequences of polyploidy still remains largely unknown. Mammalian/mechanistic target of rapamycin (mTOR) plays a key role in the coordination between eukaryotic cell growth and metabolism, thereby simultaneously respond to various environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in the regulation of many fundamental cellular processes that range from protein synthesis to autophagy. Dysregulated mTOR signaling has been found to be implicated in various disease progressions. Importantly, there is a strong correlation between the hallmarks of polyploidy and dysregulated mTOR signaling. In this review, we explore and discuss the molecular connection between mTOR signaling and polyploidy along with its association with cancer, diabetes and aging. Additionally, we address some unanswered questions and provide recommendations to further advance our understanding of the intricate relationship between mTOR signaling and polyploidy.


Subject(s)
Diabetes Mellitus , Neoplasms , Animals , Humans , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Neoplasms/genetics , Neoplasms/metabolism , Polyploidy , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mammals/metabolism
14.
Pathol Oncol Res ; 30: 1611643, 2024.
Article in English | MEDLINE | ID: mdl-38515456

ABSTRACT

The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.


Subject(s)
Lung Neoplasms , TOR Serine-Threonine Kinases , Humans , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , Transcription Factors/metabolism
15.
Hypertension ; 81(5): 1167-1177, 2024 May.
Article in English | MEDLINE | ID: mdl-38497230

ABSTRACT

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Subject(s)
Blood Pressure , Hypertension , Regulatory-Associated Protein of mTOR , Sodium Chloride, Dietary , Female , Humans , Male , Carrier Proteins/genetics , Hypertension/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Nucleotides/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Sirolimus , Sodium Chloride, Dietary/metabolism , TOR Serine-Threonine Kinases/metabolism , White People
17.
Dev Biol ; 509: 59-69, 2024 May.
Article in English | MEDLINE | ID: mdl-38373693

ABSTRACT

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Signal Transduction/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation/genetics , Body Size/genetics
18.
Behav Brain Res ; 463: 114888, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38307148

ABSTRACT

Dysfunction of the mechanistic target of rapamycin (mTOR) signaling pathway is implicated in neuropsychiatric disorders including depression and anxiety. Most studies have been focusing on neurons, and the function of mTOR signaling pathway in astrocytes is less investigated. mTOR forms two distinct complexes, mTORC1 and mTORC2, with key scaffolding protein Raptor and Rictor, respectively. The ventral tegmental area (VTA), a vital component of the brain reward system, is enrolled in regulating both depression and anxiety. In the present study, we aimed to examine the regulation effect of VTA astrocytic mTOR signaling pathway on depression and anxiety. We specifically deleted Raptor or Rictor in VTA astrocytes in mice and performed a series of behavioral tests for depression and anxiety. Deletion of Raptor and Rictor both decreased the immobility time in the tail suspension test and the latency to eat in the novelty suppressed feeding test, and increased the horizontal activity and the movement time in locomotor activity. Deletion of Rictor decreased the number of total arm entries in the elevated plus-maze test and the vertical activity in locomotor activity. These data suggest that VTA astrocytic mTORC1 plays a role in regulating depression-related behaviors and mTORC2 is involved in both depression and anxiety-related behaviors. Our results indicate that VTA astrocytic mTOR signaling pathway might be new targets for the treatment of psychiatric disorders.


Subject(s)
Astrocytes , Ventral Tegmental Area , Humans , Mice , Animals , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ventral Tegmental Area/metabolism , Astrocytes/metabolism , Depression , Multiprotein Complexes/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Carrier Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Transcription Factors/metabolism , Anxiety
19.
J Biol Chem ; 300(3): 105681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272224

ABSTRACT

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.


Subject(s)
Proto-Oncogene Proteins c-akt , Sirolimus , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Humans , Cell Line , Ribosomes/metabolism , Protein Kinase Inhibitors/pharmacology
20.
Autophagy ; 20(3): 659-674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290972

ABSTRACT

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Subject(s)
Annexin A2 , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Autophagy/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Heat Shock Transcription Factors/genetics , Annexin A2/genetics , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/metabolism , Doxorubicin , Sirolimus
SELECTION OF CITATIONS
SEARCH DETAIL
...