Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.213
Filter
1.
Neuroscience ; 556: 96-113, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39103042

ABSTRACT

The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.


Subject(s)
Deep Brain Stimulation , Depression , Medial Forebrain Bundle , Rats, Wistar , Serotonin , Animals , Deep Brain Stimulation/methods , Male , Serotonin/metabolism , Depression/therapy , Depression/metabolism , Hypothalamic Area, Lateral/metabolism , Stress, Psychological/metabolism , Stress, Psychological/therapy , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Disease Models, Animal , Rats , Corticosterone/blood , Hydroxyindoleacetic Acid/metabolism , Prefrontal Cortex/metabolism
2.
ACS Chem Neurosci ; 15(14): 2643-2653, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958080

ABSTRACT

Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.


Subject(s)
Dopamine , Electric Stimulation , Medial Forebrain Bundle , Nucleus Accumbens , Prefrontal Cortex , Rats, Sprague-Dawley , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Dopamine/metabolism , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Medial Forebrain Bundle/physiology , Male , Electric Stimulation/methods , Rats , Time Factors
3.
Sci Rep ; 14(1): 10422, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710727

ABSTRACT

Anticipating positive outcomes is a core cognitive function in the process of reward prediction. However, no neurophysiological method objectively assesses reward prediction in basic medical research. In the present study, we established a physiological paradigm using cortical direct current (DC) potential responses in rats to assess reward prediction. This paradigm consisted of five daily 1-h sessions with two tones, wherein the rewarded tone was followed by electrical stimulation of the medial forebrain bundle (MFB) scheduled at 1000 ms later, whereas the unrewarded tone was not. On day 1, both tones induced a negative DC shift immediately after auditory responses, persisting up to MFB stimulation. This negative shift progressively increased and peaked on day 4. Starting from day 3, the negative shift from 600 to 1000 ms was significantly larger following the rewarded tone than that following the unrewarded tone. This negative DC shift was particularly prominent in the frontal cortex, suggesting its crucial role in discriminative reward prediction. During the extinction sessions, the shift diminished significantly on extinction day 1. These findings suggest that cortical DC potential is related to reward prediction and could be a valuable tool for evaluating animal models of depression, providing a testing system for anhedonia.


Subject(s)
Extinction, Psychological , Reward , Animals , Rats , Male , Extinction, Psychological/physiology , Electric Stimulation , Acoustic Stimulation , Medial Forebrain Bundle/physiology , Rats, Sprague-Dawley
4.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723388

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Subject(s)
Gait Disorders, Neurologic , Levodopa , Oxidopamine , Rats, Sprague-Dawley , Animals , Levodopa/pharmacology , Levodopa/adverse effects , Male , Female , Rats , Gait Disorders, Neurologic/chemically induced , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Antiparkinson Agents/pharmacology , Disease Models, Animal , Medial Forebrain Bundle/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Dopamine/metabolism , Dose-Response Relationship, Drug , Functional Laterality/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Gait/drug effects , Dyskinesia, Drug-Induced
5.
Article in English | MEDLINE | ID: mdl-38679323

ABSTRACT

BACKGROUND: Deep brain stimulation has shown promise in treating individual patients with treatment-resistant depression, but larger-scale trials have been less successful. Here, we created what is, to our knowledge, the largest meta-analysis with individual patient data to date to explore whether the use of tractography enhances the efficacy of deep brain stimulation for treatment-resistant depression. METHODS: We systematically reviewed 1823 articles, selecting 32 that contributed data from 366 patients. We stratified the individual patient data based on stimulation target and use of tractography. Using 2-way type III analysis of variance, Welch's 2-sample t tests, and mixed-effects linear regression models, we evaluated changes in depression severity 1 year (9-15 months) postoperatively and at last follow-up (4 weeks to 8 years) as assessed by depression scales. RESULTS: Tractography was used for medial forebrain bundle (MFB) (n = 17 tractography/32 total), subcallosal cingulate (SCC) (n = 39 tractography/241 total), and ventral capsule/ventral striatum (n = 3 tractography/41 total) targets; it was not used for bed nucleus of stria terminalis (n = 11), lateral habenula (n = 10), and inferior thalamic peduncle (n = 1). Across all patients, tractography significantly improved mean depression scores at 1 year (p < .001) and last follow-up (p = .009). Within the target cohorts, tractography improved depression scores at 1 year for both MFB and SCC, though significance was met only at the α = 0.1 level (SCC: ß = 15.8%, p = .09; MFB: ß = 52.4%, p = .10). Within the tractography cohort, patients with MFB tractography showed greater improvement than patients with SCC tractography (72.42 ± 7.17% vs. 54.78 ± 4.08%) at 1 year (p = .044). CONCLUSIONS: Our findings underscore the promise of tractography in deep brain stimulation for treatment-resistant depression as a method for personalization of therapy, supporting its inclusion in future trials.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Diffusion Tensor Imaging , Humans , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Precision Medicine , Treatment Outcome , Medial Forebrain Bundle/physiology
6.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542425

ABSTRACT

Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.


Subject(s)
Rodentia , Self Stimulation , Animals , Reward , Mesencephalon , Medial Forebrain Bundle , Electric Stimulation
7.
Methods Mol Biol ; 2761: 491-498, 2024.
Article in English | MEDLINE | ID: mdl-38427257

ABSTRACT

Robust preclinical models of Parkinson's disease (PD) are valuable tools for understanding the biology and treatment of this complex disease. 6-Hydroxydopamine (6-OHDA) is a selective catecholaminergic drug injected into the substantia nigra pars compacta (SNc), medial forebrain bundle (MFB), or striatum, which is then metabolized to induce parkinsonism. Unilateral injection of 6-OHDA produces loss of dopaminergic (DAergic) neurons on the injected side with a marked motor asymmetry known as hemiparkinsonism, typically characterized by a rotational behavior to the impaired side. The present work describes a stable unilateral 6-OHDA-lesioned rat model of PD. 6-OHDA was administered into the MFB, leading to the consistent loss of striatal dopamine (DA) and behavioral imbalance in unilateral 6-OHDA-lesioned rats to establish the model of PD. This model of PD is a valuable tool for understanding the mechanisms underlying the generation of parkinsonian symptoms.


Subject(s)
Parkinson Disease , Rats , Male , Animals , Parkinson Disease/metabolism , Oxidopamine/pharmacology , Rats, Wistar , Dopamine/metabolism , Medial Forebrain Bundle/metabolism , Corpus Striatum/metabolism , Substantia Nigra/metabolism , Disease Models, Animal
8.
J Neurosurg ; 141(2): 570-580, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38489821

ABSTRACT

OBJECTIVE: The medial forebrain bundle (MFB) is a novel promising deep brain stimulation (DBS) target in severe affective disorders that courses through the subthalamic region according to tractography studies. Its potential therapeutic role arose in connection with the development of hypomania during stimulation of the subthalamic nucleus (STN) in Parkinson's disease, offering an alternative explanation for the occurrence of this side effect. However, until now its course exclusively described by tractography had not yet been confirmed by any anatomical method. The aim of this study was to fill this gap as well as to provide a detailed description of the fiber tracts surrounding the STN to facilitate a better understanding of the background of side effects occurring during STN DBS. METHODS: Ten human cadaveric brains (20 hemispheres) and 100 healthy subjects (200 hemispheres) from the S500 Release of the Human Connectome Project were involved in this study. Nineteen hemispheres were dissected according to Klingler's method. One additional hemisphere was prepared for histological examinations to validate the macroscopical results and stained with neurofibril silver impregnation according to Krutsay. The authors also aimed to reconstruct the MFB using tractography and correlated the results with their dissections and histological findings. RESULTS: The white matter connections coursing through the subthalamic region were successfully dissected. The ansa lenticularis, lenticular fasciculus, thalamic fasciculus, ipsi- and contralateral cerebellar fibers, and medial lemniscus were revealed as closely related fiber tracts to the STN. However, the existence of a distinct fiber bundle corresponding to the MFB described by tractography could not be identified. Using tractography, the authors showed that the depiction of the streamlines representing the MFB was also strongly dependent on the threshold parameters. CONCLUSIONS: According to this study's findings, the streamlines of the MFB described by tractography arise from the limitations of the diffusion-weighted MRI fiber tracking method and actually correspond to subthalamic fiber bundles, especially the ansa lenticularis and lenticular fasciculus, which erroneously continue in the anterior limb of the internal capsule, toward the prefrontal cortex.


Subject(s)
Medial Forebrain Bundle , Subthalamic Nucleus , Humans , Medial Forebrain Bundle/anatomy & histology , Medial Forebrain Bundle/diagnostic imaging , Subthalamic Nucleus/anatomy & histology , Subthalamic Nucleus/diagnostic imaging , Male , Female , Cadaver , Adult , Middle Aged , White Matter/anatomy & histology , White Matter/diagnostic imaging , Deep Brain Stimulation/methods , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Aged , Diffusion Tensor Imaging
9.
Sci Rep ; 14(1): 3721, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355892

ABSTRACT

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 µg, 1 µg, 2 µg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 µg 6-OHDA lesioned mice, and more extensive in 1 µg group. Despite the loss of more neurons from 2 µg 6-OHDA, there was no further impairment in behaviors compared to 1 µg 6-OHDA. Our data have implications that 1 µg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Oxidopamine/metabolism , Medial Forebrain Bundle/metabolism , Medial Forebrain Bundle/pathology , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Tyrosine 3-Monooxygenase/metabolism
10.
Transl Psychiatry ; 14(1): 6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191528

ABSTRACT

Deep brain stimulation (DBS) of the supero-lateral medial forebrain bundle (slMFB) is associated with rapid and sustained antidepressant effects in treatment-resistant depression (TRD). Beyond that, improvements in social functioning have been reported. However, it is unclear whether social skills, the basis of successful social functioning, are systematically altered following slMFB DBS. Therefore, the current study investigated specific social skills (affective empathy, compassion, and theory of mind) in patients with TRD undergoing slMFB DBS in comparison to healthy subjects. 12 patients with TRD and 12 age- and gender-matched healthy subjects (5 females) performed the EmpaToM, a video-based naturalistic paradigm differentiating between affective empathy, compassion, and theory of mind. Patients were assessed before and three months after DBS onset and compared to an age- and gender-matched sample of healthy controls. All data were analyzed using non-parametric Mann-Whitney U tests. DBS treatment significantly affected patients' affective responsiveness towards emotional versus neutral situations (i.e. affective empathy): While their affective responsiveness was reduced compared to healthy subjects at baseline, they showed normalized affective responsiveness three months after slMFB DBS onset. No effects occurred in other domains with persisting deficits in compassion and intact socio-cognitive skills. Active slMFB DBS resulted in a normalized affective responsiveness in patients with TRD. This specific effect might represent one factor supporting the resumption of social activities after recovery from chronic depression. Considering the small size of this unique sample as well as the explorative nature of this study, future studies are needed to investigate the robustness of these effects.


Subject(s)
Deep Brain Stimulation , Female , Humans , Depression/therapy , Medial Forebrain Bundle , Emotions , Empathy
12.
STAR Protoc ; 4(4): 102669, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37906597

ABSTRACT

Training mice to perform perceptual tasks is a vital part of integrative neuroscience. Replacing classical rewards like water with medial forebrain bundle (MFB) stimulation allows experimenters to avoid deprivation and obtain higher trial numbers per session. Here, we provide a protocol for implementing MFB-based reward in mice. We describe steps for MFB electrode implantation, efficacy testing, and stimulation calibration. After these steps, MFB reward can be used to facilitate sensory discrimination task training and enable nuanced characterization of psychophysical abilities. For complete details on the use and execution of this protocol, please refer to Verdier et al. (2022).1.


Subject(s)
Medial Forebrain Bundle , Reward , Mice , Animals , Medial Forebrain Bundle/physiology
13.
Brain Struct Funct ; 228(8): 1977-1992, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37668733

ABSTRACT

Effective neural stimulation for the treatment of severe psychiatric disorders needs accurate characterisation of surgical targets. This is especially true for the medial subthalamic region (MSR) which contains three targets: the anteromedial STN for obsessive compulsive disorder (OCD), the medial forebrain bundle (MFB) for depression and OCD, and the "Sano triangle" for pathological aggressiveness. Blocks containing the subthalamic area were obtained from two human brains. After obtaining 11.7-Tesla MRI, blocks were cut in regular sections for immunohistochemistry. Fluorescent in situ hybridisation was performed on the macaque MSR. Electron microscopic observation for synaptic specialisation was performed on human and macaque subthalamic fresh samples. Images of human brain sections were reconstructed in a cryoblock which was registered on the MRI and histological slices were then registered. The STN contains glutamatergic and fewer GABAergic neurons and has no strict boundary with the adjacent MSR. The anteromedial STN has abundant dopaminergic and serotoninergic innervation with very sparse dopaminergic neurons. The MFB is composed of dense anterior dopaminergic and posterior serotoninergic fibres, and fewer cholinergic and glutamatergic fibres. Medially, the Sano triangle presumably contains orexinergic terminals from the hypothalamus, and neurons with strong nuclear oestrogen receptor-alpha staining with a decreased anteroposterior and mediolateral gradient of staining. These findings provide new insight regarding MSR cells and their fibre specialisation, forming a transition zone between the basal ganglia and the limbic systems. Our 3D reconstruction enabled us to visualize the main histological features of the three targets which should enable better targeting and understanding of neuromodulatory stimulation results in severe psychiatric conditions.


Subject(s)
Basal Ganglia , Limbic System , Humans , Animals , Brain , Medial Forebrain Bundle , Dopamine , Macaca
14.
Brain Stimul ; 16(2): 670-681, 2023.
Article in English | MEDLINE | ID: mdl-37028755

ABSTRACT

BACKGROUND: Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. OBJECTIVE: To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. METHODS: We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. RESULTS: Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. DISCUSSION: Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. CONCLUSION: Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Animals , Callithrix , Deep Brain Stimulation/methods , Medial Forebrain Bundle , Mesencephalon
15.
Neuroscience ; 512: 16-31, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36646411

ABSTRACT

No curative or fully effective treatments are currently available for Alzheimer's disease (AD), the most common form of dementia. Electrical stimulation of deep brain areas has been proposed as a novel neuromodulatory therapeutic approach. Previous research from our lab demonstrates that intracranial self-stimulation (ICSS) targeting medial forebrain bundle (MFB) facilitates explicit and implicit learning and memory in rats with age or lesion-related memory impairment. At a molecular level, MFB-ICSS modulates the expression of plasticity and neuroprotection-related genes in memory-related brain areas. On this basis, we suggest that MFB could be a promising stimulation target for AD treatment. In this study, we aimed to assess the effects of MFB-ICSS on both explicit memory as well as the levels of neuropathological markers ptau and drebrin (DBN) in memory-related areas, in an AD rat model obtained by Aß icv-injection. A total of 36 male rats were trained in the Morris water maze on days 26-30 after Aß injection and tested on day 33. Results demonstrate that this Aß model displayed spatial memory impairment in the retention test, accompanied by changes in the levels of DBN and ptau in lateral entorhinal cortex and hippocampus, resembling pathological alterations in early AD. Administration of MFB-ICSS treatment consisting of 5 post-training sessions to AD rats managed to reverse the memory deficits as well as the alteration in ptau and DBN levels. Thus, this paper reports both cognitive and molecular effects of a post-training reinforcing deep brain stimulation procedure in a sporadic AD model for the first time.


Subject(s)
Alzheimer Disease , Electric Stimulation Therapy , Medial Forebrain Bundle , Memory Disorders , Animals , Male , Rats , Alzheimer Disease/therapy , Amyloid beta-Peptides , Disease Models, Animal , Medial Forebrain Bundle/physiology , Memory Disorders/therapy , Rats, Wistar , Spatial Memory/physiology , Electric Stimulation Therapy/methods
17.
Mol Psychiatry ; 27(11): 4561-4567, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982256

ABSTRACT

Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle is an efficacious therapy for treatment-resistant depression, providing rapid antidepressant effects. In this study, we use 18F-fluorodeoxyglucose-positron emission tomography (PET) to identify brain metabolic changes over 12 months post-DBS implantation in ten of our patients, compared to baseline. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area; probabilistic tractography was used to identify modulated fiber tracts modeled using the cathodal contacts. Eight of the ten patients included in this study were responders. PET imaging revealed significant decreases in bilateral caudate, mediodorsal thalamus, and dorsal anterior cingulate cortex metabolism that was evident at 6 months and continued to 12 months post surgery. At 12 months post-surgery, significant left ventral prefrontal cortical metabolic decreases were also observed. Right caudate metabolic decrease at 12 months was significantly correlated with mean MADRS reduction. Probabilistic tractography modeling revealed that such metabolic changes lay along cortico-limbic nodes structurally connected to the DBS target site. Such observed metabolic changes following DBS correlated with clinical response provide insights into how future studies can elaborate such data to create biomarkers to predict response, the development of which likely will require multimodal imaging analysis.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Medial Forebrain Bundle/physiology , Medial Forebrain Bundle/surgery , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/therapy , Thalamus , Gyrus Cinguli
18.
Psicothema ; 34(3): 446-453, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35861007

ABSTRACT

BACKGROUND: Intracranial self-stimulation (ICSS) is a technique by which rats press a lever to stimulate their brains through an electrode chronically implanted in brain reward areas. Currently only two laboratories in the world, one in India and one in Spain, are intensively studying the effect of this kind of deep brain stimulation on learning and memory. This paper will present the main findings. METHODS: Different groups of young and old healthy and brain-damaged rats with electrodes implanted in the medial forebrain bundle received a treatment of ICSS after being trained in several paradigms of implicit and explicit learning. Memory was tested over short and long-term periods. Structural and molecular post-mortem analyses of their brains were examined in relation to memory results. RESULTS: ICSS enhances implicit and explicit memory, especially in animals showing poor performance in the learning tasks, such as brain-damaged subjects. At the structural and molecular level, ICSS enhances size and dendritic arborization and promotes neurogenesis in specific hippocampal areas. ICSS also regulates the expression of genes related to learning and memory. CONCLUSIONS: Through activating reward and neural plasticity mechanisms, ICSS in the medial forebrain bundle is a promising technique for memory-enhancing treatments.


Subject(s)
Medial Forebrain Bundle , Self Stimulation , Animals , Humans , Medial Forebrain Bundle/physiology , Memory/physiology , Rats , Rats, Wistar , Reward , Self Stimulation/physiology
19.
eNeuro ; 9(4)2022.
Article in English | MEDLINE | ID: mdl-35701167

ABSTRACT

The medial forebrain bundle (MFB) is a white matter pathway that traverses through mesolimbic structures and includes dopaminergic neural fibers ascending from the ventral tegmental area (VTA). Since dopaminergic signals represent hedonic responses, electrical stimulation of the MFB in animals has been used as a neural reward for operant and spatial tasks. MFB stimulation strongly motivates animals to rapidly learn to perform a variety of behavioral tasks to obtain a reward. Although the MFB is known to connect various brain regions and MFB stimulation dynamically modulates animal behavior, how central and peripheral functions are affected by MFB stimulation per se is poorly understood. To address this question, we simultaneously recorded electrocorticograms (ECoGs) in the primary motor cortex (M1), primary somatosensory cortex (S1), and olfactory bulb (OB) of behaving rats while electrically stimulating the MFB. We found that MFB stimulation increased the locomotor activity of rats. Spectral analysis confirmed that immediately after MFB stimulation, sniffing activity was facilitated and the power of gamma oscillations in the M1 was increased. After sniffing activity and motor cortical gamma oscillations were facilitated, animals started to move. These results provide insight into the importance of sniffing activity and cortical gamma oscillations for motor execution and learning facilitated by MFB stimulation.


Subject(s)
Medial Forebrain Bundle , Motor Cortex , Animals , Dopamine/metabolism , Electric Stimulation , Locomotion , Medial Forebrain Bundle/metabolism , Motor Cortex/metabolism , Rats , Reward , Ventral Tegmental Area/metabolism
20.
Neuroscience ; 498: 31-49, 2022 08 21.
Article in English | MEDLINE | ID: mdl-35750113

ABSTRACT

Major Depressive Disorder (MDD) is an affective disorder typically accompanied by sleep disturbances. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) is an emerging intervention for treatment-resistant depression, but its effect on sleep has not been closely examined. Here we aimed to characterise sleep deficits in the Flinders sensitive line, an established rodent model of depression, and investigate the consequences of MFB stimulation on sleep-related phenotypes. Rats were implanted with bilateral stimulation electrodes in the MFB, surface electrodes to record electrocorticography and electromyography for sleep scoring and electrodes within the prelimbic cortex, nucleus accumbens (NAc) and dorsal hippocampus. Recordings of sleep and oscillatory activity were conducted prior to and following twenty-four hours of MFB stimulation. Behavioural anti-depressant effects were monitored using the forced swim test. Previously unreported abnormalities in the Flinders sensitive line rats were observed during slow wave sleep, including decreased circadian amplitude of its rhythm, a reduction in slow wave activity and elevated gamma band oscillations. Previously established rapid eye movement sleep deficits were replicated. MFB stimulation had anti-depressant effects on behavioural phenotype, but did not significantly impact sleep architecture; it suppressed elevated gamma activity during slow wave sleep in the electrocorticogram and prelimbic cortex signals. Diverse abnormalities in Flinders sensitive line rats emphasise slow wave sleep as a state of dysfunction in affective disorders. MFB stimulation is able to affect behaviour and sleep physiology without influencing sleep architecture. Gamma modulation may represent a component of antidepressant mechanism.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Major , Sleep, Slow-Wave , Animals , Depression , Medial Forebrain Bundle , Nucleus Accumbens , Rats , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL