Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.286
Filter
1.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714540

ABSTRACT

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Subject(s)
GABAergic Neurons , Interneurons , Tuberous Sclerosis , Interneurons/pathology , Interneurons/metabolism , Tuberous Sclerosis/pathology , Tuberous Sclerosis/metabolism , Humans , GABAergic Neurons/pathology , GABAergic Neurons/metabolism , Male , Female , Median Eminence/pathology , Median Eminence/metabolism , Somatostatin/metabolism , Child , Child, Preschool , Receptors, GABA-A/metabolism , Adolescent , Ganglionic Eminence
2.
Nat Commun ; 14(1): 8097, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062045

ABSTRACT

Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.


Subject(s)
Gonadotropin-Releasing Hormone , Semaphorins , Humans , Gonadotropin-Releasing Hormone/metabolism , Median Eminence/metabolism , Capillary Permeability , Neurons/metabolism , Puberty , Semaphorins/genetics , Semaphorins/metabolism
3.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36598900

ABSTRACT

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Subject(s)
Glucose Intolerance , Obesity, Maternal , Humans , Female , Animals , Mice , Pregnancy , Blood-Brain Barrier/metabolism , Median Eminence/metabolism , Obesity, Maternal/metabolism , Mothers , Glucose Intolerance/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Maternal Nutritional Physiological Phenomena
4.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36574295

ABSTRACT

Central integration of peripheral appetite-regulating signals ensures maintenance of energy homeostasis. Thus, plasticity of circulating molecule access to neuronal circuits involved in feeding behavior plays a key role in the adaptive response to metabolic changes. However, the mechanisms involved remain poorly understood despite their relevance for therapeutic development. Here, we investigated the role of median eminence mural cells, including smooth muscle cells and pericytes, in modulating gut hormone effects on orexigenic/anorexigenic circuits. We found that conditional activation of median eminence vascular cells impinged on local blood flow velocity and altered ghrelin-stimulated food intake by delaying ghrelin access to target neurons. Thus, activation of median eminence vascular cells modulates food intake in response to peripheral ghrelin by reducing local blood flow velocity and access to the metabolic brain.


Subject(s)
Ghrelin , Median Eminence , Median Eminence/metabolism , Appetite/physiology , Feeding Behavior , Eating
5.
Nat Commun ; 13(1): 5217, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064547

ABSTRACT

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones.


Subject(s)
Cerebral Cortex , Interneurons , LIM-Homeodomain Proteins , Median Eminence , Transcription Factors , Animals , Cerebral Cortex/metabolism , DNA-Binding Proteins/metabolism , Interneurons/physiology , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Median Eminence/metabolism , Mice , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Proto-Oncogene Proteins/metabolism , Somatostatin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Front Endocrinol (Lausanne) ; 13: 953995, 2022.
Article in English | MEDLINE | ID: mdl-35966104

ABSTRACT

The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.


Subject(s)
Leptin , Median Eminence , Animals , Ependymoglial Cells/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Median Eminence/metabolism , Mice , Neuroglia/physiology
7.
Cell Mol Life Sci ; 79(8): 458, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907165

ABSTRACT

Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.


Subject(s)
Body Fluids , Median Eminence , Arginine Vasopressin/metabolism , Body Fluids/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Hypothalamus/metabolism , Median Eminence/metabolism , Neurogenesis , Pituitary Gland/metabolism
8.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35269475

ABSTRACT

GABAergic interneurons control the neural circuitry and network activity in the brain. The dysfunction of cortical interneurons, especially those derived from the medial ganglionic eminence, contributes to neurological disease states. Pluripotent stem cell-derived interneurons provide a powerful tool for understanding the etiology of neuropsychiatric disorders, as well as having the potential to be used as medicine in cell therapy for neurological conditions such as epilepsy. Although large numbers of interneuron progenitors can be readily induced in vitro, the generation of defined interneuron subtypes remains inefficient. Using CRISPR/Cas9-assisted homologous recombination in hPSCs, we inserted the coding sequence of mEmerald and mCherry fluorescence protein, respectively, downstream that of the LHX6, a gene required for, and a marker of medial ganglionic eminence (MGE)-derived cortical interneurons. Upon differentiation of the LHX6-mEmerald and LHX6-mCherry hPSCs towards the MGE fate, both reporters exhibited restricted expression in LHX6+ MGE derivatives of hPSCs. Moreover, the reporter expression responded to changes of interneuron inductive cues. Thus, the LHX6-reporter lines represent a valuable tool to identify molecules controlling human interneuron development and design better interneuron differentiation protocols as well as for studying risk genes associated with interneuronopathies.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Interneurons/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Median Eminence/metabolism , Nerve Tissue Proteins/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
J Genet Genomics ; 49(6): 523-536, 2022 06.
Article in English | MEDLINE | ID: mdl-35032691

ABSTRACT

Aging is a slow and progressive natural process that compromises the normal functions of cells, tissues, organs, and systems. The aging of the hypothalamic median eminence (ME), a structural gate linking neural and endocrine systems, may impair hormone release, energy homeostasis, and central sensing of circulating molecules, leading to systemic and reproductive aging. However, the molecular and cellular features of ME aging remain largely unknown. Here, we describe the transcriptional landscape of young and middle-aged mouse ME at single-cell resolution, revealing the common and cell type-specific transcriptional changes with age. The transcriptional changes in cell-intrinsic programs, cell-cell crosstalk, and cell-extrinsic factors highlight five molecular features of ME aging and also implicate several potentially druggable targets at cellular, signaling, and molecular levels. Importantly, our results suggest that vascular and leptomeningeal cells may lead the asynchronized aging process among diverse cell types and drive local inflammation and cellular senescence via a unique secretome. Together, our study uncovers how intrinsic and extrinsic features of each cell type in the hypothalamic ME are changed by the aging process, which will facilitate our understanding of brain aging and provide clues for efficient anti-aging intervention at the middle-aged stage.


Subject(s)
Median Eminence , Transcriptome , Aging/genetics , Aging/metabolism , Animals , Homeostasis , Median Eminence/metabolism , Mice , Reproduction , Transcriptome/genetics
10.
Ann Neurol ; 91(2): 282-288, 2022 02.
Article in English | MEDLINE | ID: mdl-34981555

ABSTRACT

Narcolepsy type 1 (NT1) is a chronic sleep disorder correlated with loss of hypocretin(orexin). In NT1 post-mortem brains, we observed 88% reduction in corticotropin-releasing hormone (CRH)-positive neurons in the paraventricular nucleus (PVN) and significantly less CRH-positive fibers in the median eminence, whereas CRH-neurons in the locus coeruleus and thalamus, and other PVN neuronal populations were spared: that is, vasopressin, oxytocin, tyrosine hydroxylase, and thyrotropin releasing hormone-expressing neurons. Other hypothalamic cell groups, that is, the suprachiasmatic, ventrolateral preoptic, infundibular, and supraoptic nuclei and nucleus basalis of Meynert, were unaffected. The surprising selective decrease in CRH-neurons provide novel targets for diagnostics and therapeutic interventions. ANN NEUROL 2022;91:282-288.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Hypothalamus/pathology , Narcolepsy/pathology , Neurons/pathology , Aged , Aged, 80 and over , Cell Count , Female , Humans , Hypothalamus/diagnostic imaging , Immunohistochemistry , Locus Coeruleus/cytology , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/metabolism , Male , Median Eminence/cytology , Median Eminence/diagnostic imaging , Median Eminence/metabolism , Middle Aged , Narcolepsy/diagnostic imaging , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/diagnostic imaging , Paraventricular Hypothalamic Nucleus/metabolism
11.
Neuropsychopharmacol Rep ; 42(1): 52-58, 2022 03.
Article in English | MEDLINE | ID: mdl-35090101

ABSTRACT

AIMS: Fatty acid-binding protein (FABP) regulates polyunsaturated fatty acid (PUFA) intracellular trafficking and signal transduction. Our previous studies demonstrated that the alteration of PUFA in the hypothalamus is involved in pain process. However, how FABP subtypes change during pain remain unclear. Here, we examined the expression changes and localization in the hypothalamic FABP subtype in postoperative pain model mice. METHODS: Paw incision-induced postoperative methods were adopted as a pain model in male ddY mice. Mechanical allodynia was examined using the von Frey test. The analysis of several FABPs mRNA was measured by real-time PCR, and cellular localization of its protein level was measured by immunofluorescent study. RESULTS: Postoperative pain mouse elicited mechanical allodynia on Day 2 after paw incision, and mRNA expression of FABP3 increased significantly in the hypothalamus in the postoperative pain mouse model compared to that in control mice. FABP3 protein expressed in the median eminence and the arcuate nucleus, and colocalized with Iba-1, which is a microglial cell marker. Its protein level significantly increased in the median eminence on Day 2 after incision and returned to the control level on Day 4 after incision. CONCLUSIONS: Our findings indicate that FABP3 in the median eminence may change in pain stimuli and may represent a molecular link controlling pain.


Subject(s)
Fatty Acid-Binding Proteins , Median Eminence , Animals , Disease Models, Animal , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Hyperalgesia/genetics , Hyperalgesia/metabolism , Male , Median Eminence/metabolism , Mice , Pain/genetics
13.
J Endocrinol ; 248(3): 325-335, 2021 03.
Article in English | MEDLINE | ID: mdl-33446613

ABSTRACT

The role of glucagon-like peptide-1 (GLP-1) on gonadotropin-releasing hormone (GnRH) secretion was investigated in ovariectomised (OVX) ewes, in which GnRH and luteinising hormone (LH) secretion had been restrained by treatment with oestrogen and progesterone. Guide tubes for microinjection were placed above the median eminence (ME) and the animals were allowed to recover for 1 month. Jugular venous blood samples were taken via cannulae at 10 min intervals. Vehicle (50 nL) was injected into the ME at 2 h, followed by injection of GLP-1 ((7-36)-amide - 0.5 or 1 nmol) or its receptor agonist, exendin-4 (0.5 nmol) at 4 h (n = 5). Plasma LH levels were quantified as a surrogate measure of GnRH secretion. GLP-1 microinjection into the ME elicited a large amplitude LH pulse in jugular plasma, the effect was greater at the higher dose. Exendin-4 microinjection caused a large, sustained increase in plasma LH levels. To determine how GLP-1 might exert an effect on GnRH secretion, we employed double labelled in situ hybridisation, with RNAScope, for co-localisation of the GLP-1 receptor (GLP-1R) in GnRH, Kisspeptin and NPY cells in the hypothalami of three ewes in the luteal phase of the estrous cycle. GLP1R expression was clearly visible but the receptor was not expressed in GNRH1 or NPY expressing neurons and was visualised in <5% of KISS1 expressing neurons. We conclude that GLP-1 may act at the level of the secretory terminals of GnRH neurons in the ME to stimulate GnRH secretion, the pathway through which such effect is manifested remains unknown.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Gonadotropin-Releasing Hormone/metabolism , Median Eminence/metabolism , Sheep/metabolism , Animals , Exenatide , Female
14.
JCI Insight ; 5(16)2020 08 20.
Article in English | MEDLINE | ID: mdl-32644973

ABSTRACT

Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS-induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS-induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin.


Subject(s)
Growth Hormone/metabolism , Insulin/biosynthesis , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Corticotropin-Releasing Hormone/metabolism , Gene Expression Regulation , Growth Hormone/genetics , Insulin/genetics , Insulin/metabolism , Male , Median Eminence/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Somatostatin/genetics , Somatostatin/metabolism , Stress, Physiological
15.
J Neuroendocrinol ; 32(8): e12875, 2020 08.
Article in English | MEDLINE | ID: mdl-32715549

ABSTRACT

Arginine vasopressin (AVP), when released into portal capillaries with corticotrophin-releasing factor (CRF) from terminals of parvocellular neurones of the hypothalamic paraventricular nucleus (PVH), facilitates the secretion of adrenocorticotrophic hormone (ACTH) in stressed rodents. The AVP gene encodes a propeptide precursor containing AVP, AVP-associated neurophysin II (NPII), and a glycopeptide copeptin, although it is currently unclear whether copeptin is always cleaved from the neurophysin and whether the NPII and/or copeptin have any functional role in the pituitary. Furthermore, for primates, it is unknown whether CRF, AVP, NPII and copeptin are all colocalised in neurosecretory vesicles in the terminal region of the paraventricular CRF neurone axons. Therefore, we investigated, by fluorescence and immunogold immunocytochemistry, the cellular and subcellular relationships of these peptides in the CRF- and AVP-producing cells in unstressed Japanese macaque monkeys (Macaca fuscata). Reverse transcription-polymerase chain reaction analysis showed the expression of both CRF and AVP mRNAs in the monkey PVH. As expected, in the magnocellular neurones of the PVH and supraoptic nucleus, essentially no CRF immunoreactivity could be detected in NPII-immunoreactive (AVP-producing) neurones. Immunofluorescence showed that, in the parvocellular part of the PVH, NPII was detectable in a subpopulation (approximately 39%) of the numerous CRF-immunoreactive neuronal perikarya, whereas, in the outer median eminence, NPII was more prominent (approximately 52%) in the CRF varicosities. Triple immunoelectron microscopy in the median eminence demonstrated the presence of both NPII and copeptin immunoreactivity in dense-cored vesicles of CRF-containing axons. The results are consistent with an idea that the AVP propeptide is processed and NPII and copeptin are colocalised in hypothalamic-pituitary CRF axons in the median eminence of a primate. The CRF, AVP and copeptin are all co-packaged in neurosecretory vesicles in monkeys and are thus likely to be co-released into the portal capillary blood to amplify ACTH release from the primate anterior pituitary.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Median Eminence/metabolism , Secretory Vesicles/metabolism , Vasopressins/metabolism , Adrenocorticotropic Hormone/metabolism , Animals , Corticotropin-Releasing Hormone/genetics , Female , Immunohistochemistry , Macaca fuscata , Male , Neurosecretory Systems/metabolism , Tissue Distribution , Vasopressins/genetics
16.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Article in English | MEDLINE | ID: mdl-32627906

ABSTRACT

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Subject(s)
Animals, Suckling/physiology , Dopamine/physiology , Hypothalamus/physiology , Lactation/physiology , Prolactin/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Bromocriptine/pharmacology , Domperidone/pharmacology , Dopamine/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Female , Hypothalamus/drug effects , Median Eminence/drug effects , Median Eminence/metabolism , Pituitary Gland, Intermediate/drug effects , Pituitary Gland, Intermediate/metabolism , Prolactin-Releasing Hormone/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
17.
Glia ; 68(10): 1987-2000, 2020 10.
Article in English | MEDLINE | ID: mdl-32173924

ABSTRACT

Tanycytes are radial glial cells located in the mediobasal hypothalamus. Recent studies have proposed that tanycytes play an important role in hypothalamic control of energy homeostasis, although this has not been directly tested. Here, we report the phenotype of mice in which tanycytes of the arcuate nucleus and median eminence were conditionally ablated in adult mice. Although the cerebrospinal fluid-hypothalamic barrier was rendered more permeable following tanycyte ablation, neither the blood-hypothalamic barrier nor leptin-induced pSTAT3 activation in hypothalamic parenchyma were affected. We observed a significant increase in visceral fat distribution accompanying insulin insensitivity in male mice, without significant effect on either body weight or food intake. A high-fat diet tended to accelerate overall body weight gain in tanycyte-ablated mice, but the development of visceral adiposity and insulin insensitivity was comparable to wildtype. Thermoneutral housing exacerbated fat accumulation and produced a shift away from fat oxidation in tanycyte-ablated mice. These results clarify the extent to which tanycytes regulate energy balance, and demonstrate a role for tanycytes in regulating fat metabolism.


Subject(s)
Adipose Tissue/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Ependymoglial Cells/metabolism , Gene Deletion , Median Eminence/metabolism , Obesity/metabolism , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Energy Metabolism/physiology , Ependymoglial Cells/chemistry , Male , Median Eminence/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/genetics
18.
J Cell Biol ; 219(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31676717

ABSTRACT

Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.


Subject(s)
Activin Receptors, Type I/physiology , Cerebral Cortex/cytology , GABAergic Neurons/cytology , Interneurons/cytology , Median Eminence/cytology , Neurogenesis , Somatostatin/metabolism , Animals , Cell Differentiation , Cell Lineage , Cerebral Cortex/metabolism , Female , GABAergic Neurons/metabolism , Interneurons/metabolism , Male , Median Eminence/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Parvalbumins/metabolism , Reelin Protein , Signal Transduction
19.
Anat Histol Embryol ; 48(5): 415-420, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31241795

ABSTRACT

We examined the distribution of the orexin-like peptides in the pituitary and median eminence of the flat-tailed house gecko (Hemidactylus platyurus) using immunohistochemistry. Orexin-B-like, but not orexin-A-like, immunoreactivity was detected in the pituitary, specifically in the pars intermedia, and these cells corresponded to alpha-melanocyte-stimulating hormone (αMSH)-producing cells. Orexin-B and αMSH secreted from pars intermedia may modulate secretion of adenohypophyseal cells in the pars distalis. In the median eminence, orexin-B-immunoreactive puncta and fibres were observed, and these structures corresponded to gonadotropin-releasing hormone (GnRH)-immunoreactive puncta and fibres. Orexin-B secreted from GnRH-containing neurons in the hypothalamus may affect thyrotropin-releasing hormone-containing neurons resulting in modulation of αMSH secretion of melanotrophs in the pars intermedia.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Lizards , Orexins/metabolism , Pituitary Gland , alpha-MSH/metabolism , Animals , Immunohistochemistry , Median Eminence/cytology , Median Eminence/metabolism , Neurons/metabolism , Pituitary Gland/cytology , Pituitary Gland/metabolism
20.
Brain Struct Funct ; 224(6): 2079-2085, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31147779

ABSTRACT

Substance P is an eleven-amino acid neuropeptide (undecapeptide) with multiple effects on the gastrointestinal, cardiovascular, and urinary systems as well as complex central nervous system functions such as pain, learning, memory, and sexual homeostasis. Previous studies also revealed that substance P exhibits regulatory effects on growth possibly via influencing hypothalamic GHRH release in human. However, the morphological substrate of this phenomenon has not been elucidated yet. In the present study, we examined the putative presence of juxtapositions between the substance P- and GHRH-immunoreactive (IR) systems using double-label immunocytochemistry. High-magnification light microscopy with oil immersion was used to identify putative juxtapositions between these systems. Our studies revealed substance P-IR fiber network abutting on the surface of the majority of GHRH-immunoreactive neurons in the human hypothalamus. These fiber varicosities often cover a significant surface area on the GHRH-IR neurons, forming basket-like encasements with multiple en passant type contacts. The majority of these densely innervated GHRH-IR neurons were found in the infundibular nucleus/median eminence, while substance P-IR fibers often abut on the GHRH-IR neurons in the periventricular zone and basal perifornical area of the tuberal region and in the dorsomedial subdivision of the ventromedial nucleus. The posterior hypothalamus did not contain observable substance P-GHRH associations. The density and the morphology of these intimate associations suggest that substance P influences growth by regulating hypothalamic GHRH release by direct synaptic contacts.


Subject(s)
Growth Hormone-Releasing Hormone/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Substance P/metabolism , Aged , Aged, 80 and over , Diencephalon/metabolism , Female , Humans , Immunohistochemistry/methods , Male , Median Eminence/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...