Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 705
Filter
1.
BMC Med Genomics ; 17(1): 130, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745205

ABSTRACT

BACKGROUND: Whole exome sequencing allows rapid identification of causative single nucleotide variants and short insertions/deletions in children with congenital anomalies and/or intellectual disability, which aids in accurate diagnosis, prognosis, appropriate therapeutic interventions, and family counselling. Recently, de novo variants in the MED13 gene were described in patients with an intellectual developmental disorder that included global developmental delay, mild congenital heart anomalies, and hearing and vision problems in some patients. RESULTS: Here we describe an infant who carried a de novo p.Pro835Ser missense variant in the MED13 gene, according to whole exome trio sequencing. He presented with congenital heart anomalies, dysmorphic features, hydrocephalic changes, hypoplastic corpus callosum, bilateral optic nerve atrophy, optic chiasm atrophy, brain stem atrophy, and overall a more severe condition compared to previously described patients. CONCLUSIONS: Therefore, we propose to expand the MED13-associated phenotype to include severe complications that could end up with multiple organ failure and neonatal death.


Subject(s)
Abnormalities, Multiple , Mediator Complex , Mutation, Missense , Phenotype , Humans , Male , Mediator Complex/genetics , Abnormalities, Multiple/genetics , Infant , Infant, Newborn , Syndrome , Exome Sequencing
2.
Cell Rep ; 43(5): 114177, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691453

ABSTRACT

Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.


Subject(s)
Cell Differentiation , Cell Proliferation , Mediator Complex , Muscle Development , Regeneration , Stem Cells , Animals , Mice , Muscle Development/genetics , Stem Cells/metabolism , Stem Cells/cytology , Mediator Complex/metabolism , Mediator Complex/genetics , Muscle, Skeletal/metabolism , Transcription, Genetic , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
3.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696472

ABSTRACT

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Marchantia , Mediator Complex , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mediator Complex/metabolism , Mediator Complex/genetics , Marchantia/genetics , Marchantia/metabolism , Gibberellins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Pharmacol Rep ; 76(3): 535-556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602606

ABSTRACT

BACKGROUND: Genetic alterations are well characterized as contributors to the pathogenesis of cancers. Epigenetic abnormalities can lead to perturbations of the expression of genes in cancer cells without structural defects. Deregulation of proteins of the transcription machinery may result in perturbations of target genes. Mediator, a multiprotein component of the transcription machinery facilitates the function of RNA polymerase II, which transcribes most human genes. A part of the mediator with kinase activity, called the Mediator kinase module shows genetic alterations in a sub-set of colorectal cancers. METHODS: Data from publicly available genomic series of colorectal cancer patients were examined to determine alterations of Mediator kinase module component genes, including MED12, MED12L, MED13, MED13L, CDK8, CDK19, and CCNC. The prevalence of alterations in genomically defined colorectal cancer sub-sets was also interrogated. The effect of Mediator kinase module member gene expression on colorectal cancer relapse-free survival was investigated. RESULTS: Mutations in genes of the Mediator kinase module were present in a small percentage of colorectal cancers, ranging between 2 to 10% for MED12 and MED13 and alternative units MED12L and MED13L and below 2% for kinases CDK8 and CDK19 and cyclin C. Amplifications of the CDK8 gene were observed in 3% to 5% of colorectal cancers. The highest prevalence of mutations was observed in MSI cancers and the equivalent CMS1 group, with other genomic groups showing much lower frequency. An association of higher expression of MED12 with inferior relapse-free survival was observed. In contrast, higher expression of cyclin C was associated with improved survival. Colorectal cancer cell lines with CDK8 amplifications displayed sensitivity to several small molecule inhibitors of the KRAS/PI3K pathway but not to BET inhibitors. CONCLUSION: The Mediator kinase module is deregulated in a sub-set of colorectal cancers with differences observed in genomically defined groups. These variations may result in differences in sensitivity to targeted therapies and may have to be taken into consideration as such therapies are developed.


Subject(s)
Colorectal Neoplasms , Cyclin C , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Gene Expression Regulation, Neoplastic , Mediator Complex , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mediator Complex/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Cyclin C/genetics
5.
FEBS Lett ; 598(7): 758-773, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436147

ABSTRACT

The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.


Subject(s)
Immediate-Early Proteins , Mediator Complex , Humans , Mediator Complex/genetics , Mediator Complex/metabolism , Transcriptional Activation , Reproducibility of Results , Transcription Factors/metabolism , Viral Envelope Proteins/metabolism , Trans-Activators/metabolism , Immediate-Early Proteins/metabolism
6.
Stem Cell Res ; 77: 103388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492468

ABSTRACT

X-linkded Ohdo syndrome is characterized mainly by intellectual disability, delays in reaching development, feeding difficulties, thyroid dysfunction, and dysmorphic appearance with blepharophimosis, immobile mask-like face and bulbous nose. The X-linked Ohdo syndrome is caused by loss of function mutation in MED12 gene on X chromosome. The peripheral blood mononuclear cells from a patient carrying missense mutation of the MED12 gene were reprogrammed using the CytoTune-iPS2.0 Sendai Reprogramming Kit. The missense mutation in MED12 gene causes the abnormal protein variant. The established human induced pluripotent cell line will enable proper in vitro disease modelling of X-linked Ohdo syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Mediator Complex , Mutation, Missense , Humans , Induced Pluripotent Stem Cells/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Cell Line , Male , Cellular Reprogramming , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474301

ABSTRACT

Familial dilated cardiomyopathy (DCM) is among the leading indications for heart transplantation. DCM alters the transcriptomic profile. The alteration or activation/silencing of physiologically operating transcripts may explain the onset and progression of this pathological state. The mediator complex (MED) plays a fundamental role in the transcription process. The aim of this study is to investigate the MED subunits, which are altered in DCM, to identify target crossroads genes. RNA sequencing allowed us to identify specific MED subunits that are altered during familial DCM, transforming into human myocardial samples. N = 13 MED subunits were upregulated and n = 7 downregulated. MED9 alone was significantly reduced in patients compared to healthy subjects (HS) (FC = -1.257; p < 0.05). Interestingly, we found a short MED9 isoform (MED9s) (ENSG00000141026.6), which was upregulated when compared to the full-transcript isoform (MED9f). Motif identification analysis yielded several significant matches (p < 0.05), such as GATA4, which is downregulated in CHD. Moreover, although the protein-protein interaction network showed FOG2/ZFPM2, FOS and ID2 proteins to be the key interacting partners of GATA4, only FOG2/ZFPM2 overexpression showed an interaction score of "high confidence" ≥ 0.84. A significant change in the MED was observed during HF. For the first time, the MED9 subunit was significantly reduced between familial DCM and HS (p < 0.05), showing an increased MED9s isoform in DCM patients with respect to its full-length transcript. MED9 and GATA4 shared the same sequence motif and were involved in a network with FOG2/ZFPM2, FOS, and ID2, proteins already implicated in cardiac development.


Subject(s)
Cardiomyopathy, Dilated , Mediator Complex , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Heart Transplantation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism
8.
J Int Adv Otol ; 20(1): 85-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38454295

ABSTRACT

The gene MED13 participates in transcription. The MED13L gene is a paralog of MED13 that is involved in developmental gene expression. Mutations in the gene have been shown to result in a heterogenous phenotype affecting several physiological systems. Hearing loss has been reported very rarely, and vestibular weakness has never been reported in the condition. In this report, we present a mutation of MED13L in c.1162A > T (p.Arg388Ter), where we detail and describe a cochleovestibular phenotype with objective vestibulometry for the first time. The child showed bilateral sloping sensorineural hearing loss, a bilateral vestibular weakness, and an inner ear vestibular structural abnormality on imaging. Early intervention with hearing aids and vestibular rehabilitation led to a favorable outcome in terms of speech, communication, and balance. We emphasize the importance of comprehensive audiovestibular assessment in children diagnosed with MED13L mutations for effective management of these children.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Vestibule, Labyrinth , Child , Humans , Hearing Loss, Bilateral , Hearing Loss, Sensorineural/genetics , Mediator Complex/genetics , Mutation , Phenotype
9.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321384

ABSTRACT

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Subject(s)
Fabaceae , Vigna , Vigna/genetics , Phylogeny , Cold-Shock Response , Mediator Complex/genetics , Fabaceae/genetics
10.
Int J Nanomedicine ; 19: 1409-1429, 2024.
Article in English | MEDLINE | ID: mdl-38371458

ABSTRACT

Background: Facial nerves have the potential for regeneration following injury, but this process is often challenging and slow. Schwann cells (SCs) are pivotal in this process. Bone mesenchymal stem cells (BMSC)-derived exosomes promote tissue repair through paracrine action, with hypoxic preconditioning enhancing their effects. The main purpose of this study was to determine whether hypoxia-preconditioned BMSC-derived exosomes (Hypo-Exos) exhibit a greater therapeutic effect on facial nerve repair/regeneration and reveal the mechanism. Methods: CCK-8, EdU, Transwell, and ELISA assays were used to evaluate the functions of Hypo-Exos in SCs. Histological analysis and Vibrissae Movements (VMs) recovery were used to evaluate the therapeutic effects of Hypo-Exos in rat model. circRNA array was used to identify the significantly differentially expressed exosomal circRNAs between normoxia-preconditioned BMSC-derived exosomes (Nor-Exos) and Hypo-Exos. miRDB, TargetScan, double luciferase assay, qRT-PCR and WB were used to predict and identify potential exosomal cirRNA_Nkd2-complementary miRNAs and its target gene. The function of exosomal circRNA_Nkd2 in facial nerve repair/regeneration was evaluated by cell and animal experiments. Results: This study confirmed that Hypo-Exos more effectively promote SCs proliferation, migration, and paracrine function, accelerating facial nerve repair following facial nerve injury (FNI) compared with Nor-Exos. Furthermore, circRNA analysis identified significant enrichment of circRNA_Nkd2 in Hypo-Exos compared with Nor-Exos. Exosomal circRNA_Nkd2 positively regulates mediator complex subunit 19 (MED19) expression by sponging rno-miR-214-3p. Conclusion: Our results demonstrated a mechanism by which Hypo-Exos enhanced SCs proliferation, migration, and paracrine function and facial nerve repair and regeneration following FNI through the circRNA_Nkd2/miR-214-3p/Med19 axis. Hypoxic preconditioning is an effective and promising method for optimizing the therapeutic action of BMSC-derived exosomes in FNI.


Subject(s)
Exosomes , Mediator Complex , Mesenchymal Stem Cells , MicroRNAs , RNA, Circular , Animals , Rats , Cell Proliferation , Exosomes/metabolism , Facial Nerve/metabolism , Hypoxia/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Nerve Regeneration , RNA, Circular/genetics , Schwann Cells , Mediator Complex/genetics , Carrier Proteins/genetics
11.
FEBS J ; 291(9): 1909-1924, 2024 May.
Article in English | MEDLINE | ID: mdl-38380720

ABSTRACT

Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Mediator Complex , RNA, Long Noncoding , Tumor Suppressor Protein p53 , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Drug Resistance, Neoplasm/genetics , Female , Mediator Complex/genetics , Mediator Complex/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Fluorouracil/pharmacology , Cell Line, Tumor , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Acetylation/drug effects , Histones/metabolism , Histones/genetics
12.
Am J Med Genet A ; 194(5): e63537, 2024 May.
Article in English | MEDLINE | ID: mdl-38193604

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 8 (CDK8) is part of a regulatory kinase module that regulates the activity of the Mediator complex. The Mediator, a large conformationally flexible protein complex, goes on to regulate RNA polymerase II activity, consequently affecting transcriptional regulation. Thus, inactivating mutations of the genes within the kinase module cause aberrant transcriptional regulation and disease, namely, CDK8-related intellectual developmental disorder with hypotonia and behavioral abnormalities (IDDHBA). CASE PRESENTATION: We describe, for the first time, a likely pathogenic heterozygous CDK8 variant c.599G>A, p.(Arg200Gln) inherited from the biological mother. The clinical presentation of the child and mother is within the described clinical spectrum for IDDHBA; however, undocumented progressive contractures of the hips and knees as well as scoliosis were also observed in the child. This phenotype was not found in the mother, highlighting a heterogenous presentation for the same variant within the same family. Furthermore, the described clinical presentation may further support the notion of a module- or Mediator-related syndrome with varying clinical presentation. CONCLUSION: This case report documents the first inherited case of IDDHBA and expands the phenotypic spectrum for CDK8-related disease to include undocumented progressive contractures of the hips and knees as well as scoliosis, which may support the notion of a module- or Mediator-related syndrome with varying clinical presentation.


Subject(s)
Contracture , Scoliosis , Child , Humans , Cyclin-Dependent Kinase 8/genetics , Mediator Complex/genetics , Mutation , Contracture/diagnosis , Contracture/genetics
13.
Br J Cancer ; 130(5): 716-727, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38195889

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. We previously found that Mediator complex subunit 23 (MED23) is important for the tumourigenicity of lung cancer cells with hyperactive Ras activity in vitro, although the in vivo function of MED23 in lung tumourigenesis remains to be explored. METHODS: In this study, we utilized well-characterized KrasG12D-driven non-small cell lung cancer mouse model to investigate the role of MED23 in lung cancer. The lung tumour progression was evaluated by H&E and IHC analysis. Western blotting and qRT-PCR assays were performed to detect changes in gene expression. Immune cells were analyzed by FACS technology. RNA-seq and reporter assays were conducted to explore the mechanism. RESULTS: We observed that lung epithelial Med23 deletion by adeno-Cre resulted in a significant increase in KrasG12D tumour number and size, which was further verified with another mouse model with Med23 specifically deleted in alveolar type II cells. Mice with lung-specific Med23 deficiency also exhibited accelerated tumourigenesis, and a higher proliferation rate for tumour cells, along with increased ERK phosphorylation. Notably, the numbers of infiltrating CD4+ T cells and CD8+ T cells were significantly reduced in the lungs of Med23-deficient mice, while the numbers of myeloid-derived suppressor cells (MDSCs) and Treg cells were significantly increased, suggesting the enhanced immune escape capability of the Med23-deficient lung tumours. Transcriptomic analysis revealed that the downregulated genes in Med23-deficient lung tumour tissues were associated with the immune response. Specifically, Med23 deficiency may compromise the MHC-I complex formation, partially through down-regulating B2m expression. CONCLUSIONS: Collectively, these findings revealed that MED23 may negatively regulate Kras-induced lung tumourigenesis in vivo, which would improve the precise classification of KRAS-mutant lung cancer patients and provide new insights for clinical interventions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Lung/metabolism , Mediator Complex/genetics
14.
EMBO J ; 43(3): 437-461, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228917

ABSTRACT

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics , Heat Shock Transcription Factors/metabolism , Transcriptional Activation , Nucleotidyltransferases/metabolism , Mediator Complex/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism
15.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279317

ABSTRACT

The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.


Subject(s)
Leiomyoma , Mediator Complex , RNA, Long Noncoding , Uterine Neoplasms , Female , Humans , Ethnicity , Leiomyoma/genetics , Leiomyoma/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Mutation , Myometrium/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
16.
J Biochem Mol Toxicol ; 38(1): e23524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37650745

ABSTRACT

Breast cancer, as the most prevalent female malignancy, leads the cancer-related death in women worldwide. Local anesthetic chloroprocaine exhibits antitumor potential, but its specific functions and underlying molecular mechanisms in breast cancer remain unclear. Here, we demonstrated chloroprocaine significantly inhibited proliferation, invasion and induced apoptosis of breast cancer cells in vitro. Tumor growth and pulmonary metastasis were also suppressed in BABL/c nude mice model with chloroprocaine treatment. LINC00494 was identified as one of the most downregulated long noncoding RNAs in chloroprocaine-treated breast cancer cells by high-throughput sequencing. Futhermore, high level of LINC00494 was positively associated with poor outcome of breast cancer patients. LINC00494 acted as a "miRNAs sponge" to compete with MED19 for the biding of miR-3619-5p, led to the upregulation of MED19. LINC00494/miR-3619-5p/MED19 axis participated in chloroprocaine-mediated inhibition of proliferation, invasion and promotion of apoptosis of breast cancer cells. Consequently, our finding suggested local anesthetic chloroprocaine attenuated breast cancer aggressiveness through LINC00494-mediated signaling pathway, which detailly revealed the clinical value of chloroprocaine during breast cancer treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , Procaine/analogs & derivatives , Animals , Mice , Humans , Female , Breast Neoplasms/metabolism , Mice, Nude , Anesthetics, Local/pharmacology , Cell Line, Tumor , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis , Gene Expression Regulation, Neoplastic , Cell Movement , Mediator Complex/genetics , Mediator Complex/metabolism
17.
Reprod Sci ; 31(2): 291-308, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37516697

ABSTRACT

Uterine leiomyomas are the most common tumor of reproductive-age women worldwide. Although benign, uterine fibroids cause significant morbidity and adversely impact the quality of life for affected women. Somatic mutations in the exon 2 of the mediator complex subunit 12 (MED-12) gene represent the most common single gene mutation associated with uterine leiomyomas. The objective of this review was to evaluate the current role of MED-12 mutation in the pathophysiology of uterine fibroids, to assess the prevalence of MED-12 mutation among different populations, and to identify the most common subtypes of MED-12 mutations found in uterine fibroids. A comprehensive search was conducted using Pubmed, Embase, Scopus, and the Web of Science. English-language publications that evaluated MED-12 mutation and uterine fibroids in humans, whether experimental or clinical, were considered. We identified 380 studies, of which 23 were included, comprising 1353 patients and 1872 fibroid tumors. Of the total number of tumors analyzed, 1045 (55.8%) harbored a MED-12 mutation. Among the 23 studies included, the frequency of MED-12 mutation varied from 31.1 to 80% in fibroid samples. The most common type of MED-12 mutation was a heterozygous missense mutation affecting codon 44 of exon 2, specifically the nucleotide 131. Studies reported that MED-12 mutation acts by increasing levels of AKT and disrupting the cyclin C-CDK8/19 kinase activity. The overall average prevalence of MED-12 mutation in uterine fibroids was found to be 55.8% across the global population, though the frequency varied greatly among different countries.


Subject(s)
Leiomyoma , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/genetics , Quality of Life , Mediator Complex/genetics , Leiomyoma/genetics , Leiomyoma/pathology , Mutation
18.
J Gastroenterol ; 59(2): 119-137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37925679

ABSTRACT

BACKGROUND: Three-dimensional (3D) chromatin architecture frequently altered in cancer. However, its changes during the pathogenesis of hepatocellular carcinoma (HCC) remained elusive. METHODS: Hi-C and RNA-seq were applied to study the 3D chromatin landscapes and gene expression of HCC and ANHT. Hi-C Pro was used to generate genome-wide raw interaction matrices, which were normalized via iterative correction (ICE). Moreover, the chromosomes were divided into different compartments according to the first principal component (E1). Furthermore, topologically associated domains (TADs) were visualized via WashU Epigenome Browser. Furthermore, differential expression analysis of ANHT and HCC was performed using the DESeq2 R package. Additionally, dysregulated genes associated with 3D genome architecture altered were confirmed using TCGA, qRT-PCR, immunohistochemistry (IHC), etc. RESULTS: First, the intrachromosomal interactions of chr1, chr2, chr5, and chr11 were significantly different, and the interchromosomal interactions of chr4-chr10, chr13-chr21, chr15-chr22, and chr16-chr19 are remarkably different between ANHT and HCC, which resulted in the up-regulation of TP53I3 and ZNF738 and the down-regulation of APOC3 and APOA5 in HCC. Second, 49 compartment regions on 18 chromosomes have significantly switched (A-B or B-A) during HCC tumorigenesis, contributing to up-regulation of RAP2A. Finally, a tumor-specific TAD boundary located on chr5: 6271000-6478000 and enhancer hijacking were identified in HCC tissues, potentially associated with the elevated expression of MED10, whose expression were associated with poor prognosis of HCC patients. CONCLUSION: This study demonstrates the crucial role of chromosomal structure variation in HCC oncogenesis and potential novel biomarkers of HCC, laying a foundation for cancer precision medicine development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Chromatin/genetics , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Chromosomes/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , rap GTP-Binding Proteins/genetics , rap GTP-Binding Proteins/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism
19.
Seizure ; 116: 30-36, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36894399

ABSTRACT

OBJECTIVES: The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS: Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION: MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.


Subject(s)
Epilepsies, Partial , Epilepsy , Intellectual Disability , Male , Humans , Intellectual Disability/genetics , Genes, X-Linked/genetics , Phenotype , Mediator Complex/genetics , Mediator Complex/chemistry , Mediator Complex/metabolism , Epilepsies, Partial/genetics , Epilepsy/genetics , Transcription Factors/genetics
20.
Cancer Biomark ; 38(4): 603-611, 2023.
Article in English | MEDLINE | ID: mdl-38073375

ABSTRACT

OBJECTIVE: MED subunits have been reported to be associated with various types of tumors, however, the potential role of MED7 in hepatocellular carcinoma (HCC) was still unclear. The aim of the study was to explore the role of MED7 in HCC. METHODS: In this study, MED7 mRNA expression levels between HCC and adjacent normal tissues were first analyzed by several public datasets. Then we utilized a tissue microarray (TMA) to investigate the clinical role of MED7 in HCC by immunohistochemistry (IHC). Meanwhile, the potential mechanisms of MED7 based on gene-gene correlation analyses were also explored. RESULTS: High mRNA level of MED7 correlated with advanced stage and worse grade of differentiation. IHC results showed that MED7 protein level was upregulated in HCC and associated with Edmondson grade and Microvascular invasion in 330 cases of HCC. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that MED7 co-expressed genes participate primarily in ribonucleoprotein complex biogenesis, protein targeting, mRNA processing and nucleoside triphosphate metabolic process et cetera. Further analysis also revealed that MED7 mRNA level has significant correlation with immune cells infiltration levels. CONCLUSION: MED7 was upregulated in HCC and correlated with progression of HCC. Meanwhile, MED7 may promote HCC through participating in multiple gene networks to influence tumorigenesis as well as immune response in HCC microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mediator Complex , Humans , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Messenger/genetics , Tumor Microenvironment , Up-Regulation , Mediator Complex/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...