Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.068
Filter
1.
J Photochem Photobiol B ; 255: 112925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703451

ABSTRACT

Visible light triggers free radical production in alive and intact Drosophila melanogaster. We exposed fruit flies to red (613-631 nm), green (515-535 nm), and blue (455-475 nm) light while we monitored changes in unpaired electron content with an electron spin resonance spectrometer (ESR/EPR). The immediate response to light is a rapid increase in spin content lasting approximately 10 s followed by a slower, linear increase for approximately 170 s. When the light is turned off, the spin population promptly decays with a similar time course, though never fully returning to baseline. The magnitude and time course of the spin production depends on the wavelength of the light. Initially, we surmised that eumelanin might be responsible for the spin change because of its documented ability for visible light absorption and its highly stable free radical content. To explore this, we utilized different fruit fly strains with varying eumelanin content and clarified the relation of melanin types with the spin response. Our findings revealed that flies with darker cuticle have at least three-fold more unpaired electrons than flies with yellow cuticle. However, to our surprise, the increase in unpaired electron population by light was not drastically different amongst the genotypes. This suggests that light-induced free radical production may not exclusively rely on the presence of black melanin, but may instead be dependent on light effects on quinone-based cuticular polymers.


Subject(s)
Drosophila melanogaster , Light , Melanins , Animals , Free Radicals/chemistry , Drosophila melanogaster/metabolism , Electron Spin Resonance Spectroscopy , Melanins/chemistry , Melanins/metabolism , Melanins/biosynthesis
2.
Biomed Mater ; 19(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38729172

ABSTRACT

The sensitivity and diagnostic accuracy of magnetic resonance imaging mainly depend on the relaxation capacity of contrast agents (CAs) and their accumulated amount at the pathological region. Due to the better biocompatibility and high-spin capacity, Fe-complexes have been studied widely as an alternative to replace popular Gd-based CAs associated with potential biotoxicity. Compared with a variety of Fe complex-based CAs, such as small molecular, macrocyclic, multinuclear complexes, the form of nanoparticle exhibits outstanding longitudinal relaxation, but the clinical transformation was still limited by the inconspicuous difference of contrast between tumor and normal tissue. The enhanced effect of contrast is a positive relation as relaxation of CAs and their concentration in desired region. To specifically improve the amount of CAs accumulated in the tumor, pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) was modified on melanin, a ubiquitous natural pigment providing much active sites for chelating with Fe(III). The Fe(III)-Mel-PEOz we prepared could raise the tumor cell endocytosis efficiency via switching surface charge from anion to cation with the stimuli of the decreasing pH of tumor microenvironment. The change of pH has negligible effect on ther1of Fe(III)-Mel-PEOz, which is always maintained at around 1.0 mM-1s-1at 0.5 T. Moreover, Fe(III)-Mel-PEOz exhibited low cytotoxicity, and satisfactory enhancement of positive contrast effectin vivo. The excellent biocompatibility and stable relaxation demonstrate the high potential of Fe(III)-Mel-PEOz in the diagnosis of tumor.


Subject(s)
Biocompatible Materials , Contrast Media , Iron , Magnetic Resonance Imaging , Melanins , Melanins/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Animals , Biocompatible Materials/chemistry , Humans , Iron/chemistry , Mice , Cell Line, Tumor , Polyamines/chemistry , Nanoparticles/chemistry , Tumor Microenvironment
3.
Nano Lett ; 24(21): 6353-6361, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757814

ABSTRACT

Polydopamine (PDA)-derived melanin-like materials exhibit significant photothermal conversion owing to their broad-spectrum light absorption. However, their low near-infrared (NIR) absorption and inadequate hydrophilicity compromise their utilization of solar energy. Herein, we developed metal-loaded poly(norepinephrine) nanoparticles (PNE NPs) by predoping metal ions (Fe3+, Mn3+, Co2+, Ca2+, Ga3+, and Mg2+) with norepinephrine, a neuron-derived biomimetic molecule, to address the limitations of PDA. The chelation between catechol and metal ions induces a ligand-to-metal charge transfer (LMCT) through the formation of donor-acceptor pairs, modulating the light absorption behavior and reducing the band gap. Under 1 sun illumination, the Fe-loaded PNE coated wood evaporator achieved a high seawater evaporation rate and efficiency of 1.75 kg m-2 h-1 and 92.4%, respectively, owing to the superior hydrophilicity and photothermal performance of PNE. Therefore, this study offers a comprehensive exploration of the role of metal ions in enhancing the photothermal properties of synthetic melanins.


Subject(s)
Melanins , Norepinephrine , Melanins/chemistry , Norepinephrine/chemistry , Polymerization/radiation effects , Polymers/chemistry , Neurotransmitter Agents/chemistry , Indoles/chemistry , Oxidation-Reduction , Metals/chemistry , Nanoparticles/chemistry
4.
ACS Appl Mater Interfaces ; 16(17): 22493-22503, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647220

ABSTRACT

Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.


Subject(s)
Dihydroxyphenylalanine/analogs & derivatives , Indoles , Levodopa , Melanins , Nanoparticles , Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Nanoparticles/chemistry , Melanins/chemistry , Animals , Mice , Levodopa/chemistry , Photothermal Therapy , Humans , Cell Line, Tumor , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology
5.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Article in English | MEDLINE | ID: mdl-38583851

ABSTRACT

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Subject(s)
Hyaluronic Acid , Melanins , Urease , Humans , Cell Line, Tumor , Decapodiformes , Hyaluronic Acid/chemistry , Melanins/chemistry , Nanoparticles/chemistry , Phototherapy/methods , Urease/chemistry , Urease/metabolism , Animals
6.
J Inorg Biochem ; 256: 112548, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593610

ABSTRACT

Neuromelanin (NM) plays a well-established role in neurological disorders pathogenesis; the mechanism of action is still discussed and the investigations in this field are limited by NM's complex and heterogeneous composition, insolubility, and low availability from human brains. An alternative can be offered by synthetic NM obtained from dopamine (DA) oxidative polymerization; however, a deep knowledge of the influence of both physicochemical parameters (T, pH, ionic strength) and other compounds in the reaction media (buffer, metal ions, other catecholamines) on DA oxidation process and, consequently, on synthetic NM features is mandatory to develop reliable NM preparation methodologies. To partially fulfill this aim, the present work focuses on defining the role of temperature, buffer and metal ions on both DA oxidation rate and DA oligomer size. DA oxidation in the specific conditions is monitored by UV-Vis spectroscopy and Principal Component Analysis (PCA) is run either on the raw spectra to model the background absorption increase, related to small DA oligomers formation, or on their first derivative to rationalize DA consumption. After having studied three case studies, 3-Way PCA is applied to directly evaluate the effect of temperature and buffer type on DA oxidation in the presence of different metal ions. Despite the proof-of-concept nature of the work and the number of compounds still to be included in the investigation, the preliminary results and the possibility to further expand the chemometric approach represent an interesting contribution to the field of in vitro simulation of NM synthesis.


Subject(s)
Dopamine , Melanins , Oxidation-Reduction , Polymerization , Principal Component Analysis , Dopamine/metabolism , Dopamine/chemistry , Melanins/chemistry , Melanins/metabolism , Melanins/biosynthesis , Temperature , Humans , Buffers , Metals/chemistry , Hydrogen-Ion Concentration
7.
Biomater Sci ; 12(9): 2434-2443, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38517309

ABSTRACT

In this study, the formation of protein microspheres through lysosomal enzyme-assisted biomineralized crystallization was demonstrated. Spherical micro-sized hybrid CaCO3 constructs were synthesized and characterized using field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and particle size analysis. Additionally, parameters such as the Brunauer-Emmett-Teller surface area and single-point total pore volume, and adsorption/desorption analysis were used to investigate the mesoporous properties, which are advantageous for lysosomal enzyme (LE) loading. A LE can be used as an organic template, not only as a morphological controller but also for entrapping LE during the crystallization pathway. The hybrid protein microspheres accommodated 2.3 mg of LE with a 57% encapsulation efficiency and 5.1 wt% loading. The peroxidase activity of the microspheres was calculated and found to be approximately 0.0238 mM-1 min-1. pH-responsive release of the LE from CaCO3 was observed, suggesting potential biomedical and cosmetic applications in acidic environments. The hybrid LE microsphere treatment significantly alleviated melanin production in a dose-dependent manner and further downregulated the mRNA expression of MITF, tyrosinase, TYRP-1, and TYRP-2. These results indicate skin-whitening effects by inhibiting melanin without inducing cytotoxicity. The data provide the first evidence of the potential use of a LE for obtaining hybrid minerals and the effectiveness of biomineralization-based sustainable delivery of enzyme-based vehicles based on organelle-extract-assisted biomineralization.


Subject(s)
Calcium Carbonate , Melanins , Microspheres , Melanins/chemistry , Melanins/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Lysosomes/metabolism , Animals , Humans , Hydrogen-Ion Concentration
8.
Biomacromolecules ; 25(4): 2563-2573, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38485470

ABSTRACT

In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.


Subject(s)
Levodopa , Melanins , Humans , Melanins/chemistry , Antioxidants , Inflammation/drug therapy
9.
J Biomater Sci Polym Ed ; 35(7): 967-988, 2024 May.
Article in English | MEDLINE | ID: mdl-38340313

ABSTRACT

The possibility of controlling periorbital hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. In the current investigation, 1% vitamin K (Vit K) was incorporated into a Chitosan/alginate hydrogel which aimed to increase the dermal delivery and anti-pigmentation effect. The Vit K-hydrogel was evaluated using several different tests, including volume expansion/contraction analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), ultraviolet (UV) absorbance spectroscopy, and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Vit K hydrogel's drug release profile showed a steady increase over time. Furthermore, the modified Vit K hydrogel formulations showed no harmful effects in an in vitro cytotoxicity study. The Vit K hydrogel was tested for dermal irritation on Wistar rats, and the hydrogel was found to be non-irritating. Furthermore, Vit K-hydrogel inhibited melanin formation (31.76 ± 1.14%) and was remarkably higher than free Vit K. In addition, Vit K-hydrogel inhibited L-dopa auto-oxidation to a greater extent (94.80 ± 2.41%) in comparison with Vit K solution (73.95 ± 1.62%). Vit K-hydrogel enhanced percutaneous transport of Vit K, according to in vitro percutaneous absorption findings, suggesting that this innovative formulation may provide new therapeutic options for periorbital hyperpigmentation.


Subject(s)
Alginates , Chitosan , Hydrogels , Hyperpigmentation , Rats, Wistar , Chitosan/chemistry , Animals , Alginates/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hyperpigmentation/drug therapy , Rats , Drug Liberation , Drug Carriers/chemistry , Vitamin K 1/chemistry , Vitamin K 1/administration & dosage , Vitamin K 1/pharmacology , Melanins/chemistry , Skin/drug effects , Skin/metabolism , Humans , Male
10.
Colloids Surf B Biointerfaces ; 235: 113756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278033

ABSTRACT

Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from two different monomeric precursors, i.e. 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and dopamine (DA), demonstrating to be able to polymerize on the surface of MgHA nanostructures, thus leading to a melanin coating. This functionalization was realized by a simple and green preparation method requiring mild conditions in an aqueous medium and room temperature. Complementary spectroscopy and electron imaging analyses were carried out to define the effective formation of a stable coating, the percentage of the organic compounds, and the structural properties of resulting melanin-coated nanostructures, which showed good antioxidant activity. The in vitro interaction with a cell model, i.e. mouse fibroblasts, was investigated. The excellent biocompatibility of all bioinspired nanostructures was confirmed from a suitable cell proliferation. Finally, the enhanced biological performances of the nanostructures coated with melanin from DHICA were confirmed by scratch assays. Jointly our findings indicated that low crystalline MgHA and melanin pigments can be efficiently combined, and the resulting nanostructures are promising candidates as multifunctional platforms for a more efficient approach for skin regeneration and protection.


Subject(s)
Indoles , Melanins , Animals , Mice , Melanins/chemistry , Indoles/pharmacology , Indoles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Wound Healing , Hydroxyapatites , Regeneration
11.
Chem Commun (Camb) ; 60(19): 2613-2616, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38265468

ABSTRACT

Melanin is a biopolymer pigment that plays a central role in skin photoprotection. Its extensive chemical and dynamical heterogeneity imparts this property through a broad featureless ultraviolet/visible absorption spectrum. Conventionally, the rational design of synthetic photoprotective pigments revolves around establishing the structure-spectra correlation and developing biomimetic materials with desired optical properties. This approach fails to explain the mechanistic details of melanin's absorption spectrum because it arises from an ensemble of structures rather than a local minimum on the potential energy surface. Here, we propose an inverse design approach to elucidate the contributions of dominant chromophoric units in various wavelength domains of the melanin spectrum.


Subject(s)
Melanins , Skin , Melanins/chemistry , Light
12.
Nanoscale ; 16(1): 299-308, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38059484

ABSTRACT

Melanin-inspired nanomaterials offer unique photophysical, electronic and radical scavenging properties that are widely explored for health and environmental preservation, or energy conversion and storage. The incorporation of functional melanin building blocks in more complex nanostructures or surfaces is typically achieved via a bottom-up approach starting from a molecular precursor, in most cases dopamine. Here we demonstrate that indeed, the oxidative polymerization of dopamine, for the synthesis of melanin-like polydopamine (PDA), leads to the simultaneous formation of more than one nanosized species with different compositions, morphologies and properties. In particular, a low-density polymeric structure and dense nanoparticles (NP) are simultaneously formed. The two populations could be separated and analyzed in real time using a chromatographic technique free of any stationary phase (flow field fractionation, FFF). The results following the synthesis of melanin-like PDA showed that the NP are formed only during the first 6 hours as a result of a supramolecular self-assembly-driven polymerization, while the formation of the polymer continues for about 36 hours. The two populations were also separated and characterized using TEM, UV-vis absorption spectroscopy, fluorescence and light scattering spectroscopy, DLS, FTIR, ζ-potential measurements, gel electrophoresis and pH titrations. Interestingly, very different properties between the two populations were observed: in particular the polymer contains a higher number of catechol units (8 mmol g-1 -OH) with respect to the NP (1 mmol g-1 -OH) and presents a much higher antioxidant activity. The attenuation of light by NP is more efficient than that by the polymer especially in the Vis-NIR region. Moreover, while the NP scatter light with an efficiency up to 27% they are not fluorescent, and the polymer does not scatter light but shows an excitation wavelength-dependent fluorescence typical of multi-fluorophoric uncoupled systems.


Subject(s)
Biomimetics , Melanins , Melanins/chemistry , Dopamine , Spectrum Analysis , Polymers/chemistry
13.
Chembiochem ; 24(24): e202300628, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37850717

ABSTRACT

This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.


Subject(s)
Amyloid beta-Peptides , Melanins , Amyloid beta-Peptides/metabolism , Melanins/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Catechols/chemistry
14.
Nat Commun ; 14(1): 5651, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803012

ABSTRACT

Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.


Subject(s)
Fossils , Melanins , Animals , Melanins/chemistry , Pigmentation , Vertebrates , Feathers
15.
ACS Appl Mater Interfaces ; 15(40): 46756-46764, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37774145

ABSTRACT

Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisting of ternary hybrid nanoparticles with a silver core and a melanin component embedded into a silica matrix. Although preliminary evidence suggested a crucial role of the Ag sonophore and the melanin-containing nanoenvironment, whether and in what manner the PA response is controlled and affected by the self-structured hybrid nanosystems remained unclear. Because of their potential as multifunctional platforms for biomedical applications, a detailed investigation of the metal-polymer-matrix interplay underlying the PA response was undertaken to understand the physical and chemical factors determining the enhanced response and to optimize the architecture, composition, and performance of the nanoparticles for efficient imaging applications. Herein, we provide the evidence for a strong synergistic interaction between eumelanin and Ag which suggests an important role in the in situ-generated metal-organic interface. In particular, we show that a strict ratio between melanin and silver precursors and an accurate choice of metal nanoparticle dimension and the kind of metal are essential for achieving strong enhancements of the PA response. Systematic variation of the metal/melanin component is thus shown to offer the means of tuning the stability and intensity of the photoacoustic response for various biomedical and theranostic applications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Photoacoustic Techniques , Melanins/chemistry , Silver/chemistry , Silicon Dioxide , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Polymers , Photoacoustic Techniques/methods
16.
ACS Appl Mater Interfaces ; 15(32): 38335-38345, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37539960

ABSTRACT

Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.


Subject(s)
Amyloid , Amyloid/chemistry , Free Radicals/chemistry , Melanins/chemistry , Ultraviolet Rays , Electrochemical Techniques , Cytoprotection
17.
Arch Microbiol ; 205(9): 306, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580645

ABSTRACT

Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.


Subject(s)
Anti-Infective Agents , Melanins , Animals , Melanins/chemistry , Biopolymers/metabolism , Anti-Infective Agents/metabolism , Biodegradation, Environmental , Bacteria/metabolism
18.
Int J Med Mushrooms ; 25(6): 55-73, 2023.
Article in English | MEDLINE | ID: mdl-37522533

ABSTRACT

The cell wall of Auricularia auricula fruit bodies is extremely tough, making it difficult to dissolve the melanin using the traditional preparation method. To investigate the efficient preparation of melanin and its resistance to oxidative stress, this paper first used ultrasound-assisted alkaline cellulase to optimize the optimal wall-breaking parameters through a Box-Behnken design based on a single-factor experiment. After optimization, the yield of melanin from A. auricula reached 3.201 ± 0.018%. Then, different types and different proportions of deep eutectic solvents (DES) were used for further extraction. When choline chloride and urea were selected and the ratio was 1:2, the melanin yield was up to 25.99% ± 2.36%. Scanning electron microscope (SEM) images showed that the melanin was amorphous mass with no crystal structure. X-ray photoelectron spectroscopy (XPS) analysis revealed that the melanin was mainly composed of C (5.38%), O (15.69%) and N (30.29%), as was the typical composition of eumelanin. The melanin had a concentration-dependent relationship with both ABTS+ and hydroxyl radical scavenging ability; at the concentration of 0.5 mg/mL, it significantly prolonged Caenorhabditis elegans survival under hydrogen peroxide and methyl viologen stress and increased the glutathione level and enzyme (total superoxide dismutase and catalase) activities in vivo compared with the negative control (P < 0.05), indicating that the melanin enhances oxidative stress resistance in C. elegans.


Subject(s)
Antioxidants , Basidiomycota , Animals , Antioxidants/chemistry , Melanins/chemistry , Caenorhabditis elegans , Basidiomycota/chemistry
19.
J Mater Chem B ; 11(32): 7528-7543, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37432655

ABSTRACT

Melanin, a widely distributed pigment found in various organisms, possesses distinct structures that can be classified into five main types: eumelanin (found in animals and plants), pheomelanin (found in animals and plants), allomelanin (found in plants), neuromelanin (found in animals), and pyomelanin (found in fungi and bacteria). In this review, we present an overview of the structure and composition of melanin, as well as the various spectroscopic identification methods that can be used, such as Fourier transform infrared (FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy, and thermogravimetric analysis (TGA). We also provide a summary of the extraction methods of melanin and its diverse biological activities, including antibacterial properties, anti-radiation effects, and photothermal effects. The current state of research on natural melanin and its potential for further development is discussed. In particular, the review provides a comprehensive summary of the analysis methods used to determine melanin species, offering valuable insights and references for future research. Overall, this review aims to provide a thorough understanding of the concept and classification of melanin, its structure, physicochemical properties, and structural identification methods, as well as its various applications in the field of biology.


Subject(s)
Melanins , Animals , Melanins/chemistry , Electron Spin Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Forecasting
20.
Forensic Sci Int ; 350: 111784, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37473545

ABSTRACT

Hairs is a relatively environmentally resistant biological material that is often found at crime scenes. Human hair is more durable than other biological traces such as blood or urine, and its collection and storage does not require specific preservation procedures. Melanin is the hair pigment, which is the main determinant of hair colour. There are two pigments present in human hair: eumelanin, predominant in dark hair, and pheomelanin, responsible for red colour. Eumelanin is more resistant and has photoprotective properties, while pheomelanin is phototoxic and shows lower resistance to environmental factors. The differences in the properties of eu- and pheomelanin are the basis of the present study, which aimed to examine the rate and quality of taphonomic changes in hair roots in relation to the predominant melanin type, under the influence of selected environmental factors, such as soil pH, degree of exposure to solar radiation, temperature and water from a natural watercourse (river) and chemically pure water. Therefore, changes in blonde, dark, grey, red and dyed hair roots were microscopically documented for six months under the influence of the above factors. The results of the study indicated the strongest degradation potential among acidic soil and a riverine environment, as well as the protective role of eumelanin against environmental taphonomic factors. Degradation occurred most rapidly in the river environment, where microbial activity was additionally observed. Distilled water, exposure to sunlight and low temperature did not lead to decomposition changes. The results of our team's research provide the basis for an extended analysis of the changes occurring in hair under the influence of environmental factors in relation to melanin content.


Subject(s)
Hair , Melanins , Humans , Melanins/chemistry , Hair/chemistry , Hair Color
SELECTION OF CITATIONS
SEARCH DETAIL
...