Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.651
Filter
1.
Cancer Immunol Immunother ; 73(8): 136, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833004

ABSTRACT

A checkpoint protein called the V-domain Ig suppressor of T cell activation (VISTA) is important for controlling immune responses. Immune cells that interact with VISTA have molecules, or receptors, known as VISTA receptors. Immune system activity can be modified by the interaction between VISTA and its receptors. Since targeting VISTA or its receptors may be beneficial in certain conditions, VISTA has been studied in relation to immunotherapy for cancer and autoimmune illnesses. The purpose of this study was to examine the expression levels and interactions between VISTA and its receptors, VSIG3 and PSGL-1, in breast cancer tissues. IHC analysis revealed higher levels of proteins within the VISTA/VSIG3/PSGL-1 axis in cancer tissues than in the reference samples (mastopathies). VISTA was found in breast cancer cells and intratumoral immune cells, with membranous and cytoplasmic staining patterns. VISTA was also linked with pathological grade and VSIG3 and PSGL-1 levels. Furthermore, we discovered that the knockdown of one axis member boosted the expression of the other partners. This highlights the significance of VISTA/VSIG3/PSGL-1 in tumor stroma and microenvironment remodeling. Our findings indicate the importance of the VISTA/VSIG3/PSGL-1 axis in the molecular biology of cancer cells and the immune microenvironment.


Subject(s)
B7 Antigens , Breast Neoplasms , Carcinoma, Ductal, Breast , Membrane Glycoproteins , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/immunology , B7 Antigens/metabolism , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/metabolism , Tumor Microenvironment/immunology , Middle Aged
2.
Front Immunol ; 15: 1382977, 2024.
Article in English | MEDLINE | ID: mdl-38799465

ABSTRACT

CD38 antigen is a glycoprotein that found on the surface of several immune cells, and this property makes its monoclonal antibodies have the effect of targeted elimination of immune cells. Therefore, the CD38 monoclonal antibody (such as daratumumab, Isatuximab) becomes a new treatment option for membranous nephropathy, lupus nephritis, renal transplantation, and other refractory kidney diseases. This review summarizes the application of CD38 monoclonal antibodies in different kidney diseases and highlights future prospects.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Kidney Diseases , Humans , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/metabolism , Antibodies, Monoclonal/therapeutic use , Kidney Diseases/immunology , Animals , Membrane Glycoproteins/immunology , Membrane Glycoproteins/antagonists & inhibitors , Kidney Transplantation , Antibodies, Monoclonal, Humanized/therapeutic use
3.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747919

ABSTRACT

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


Subject(s)
ADP-ribosyl Cyclase 1 , CD28 Antigens , Flow Cytometry , HLA-DR Antigens , Leukocyte Common Antigens , Multiple Myeloma , Humans , Multiple Myeloma/immunology , CD28 Antigens/immunology , CD28 Antigens/metabolism , ADP-ribosyl Cyclase 1/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HLA-DR Antigens/blood , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Female , Aged , CD57 Antigens/metabolism , Case-Control Studies , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Glycoproteins/immunology
4.
Sci Immunol ; 9(95): eadi7418, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758807

ABSTRACT

Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.


Subject(s)
B7 Antigens , CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Mice, Inbred C57BL , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/genetics , Humans , B7 Antigens/immunology , B7 Antigens/genetics , Mice, Knockout , Cell Line, Tumor , Female , Membrane Proteins , Nerve Tissue Proteins
5.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
6.
Scand J Immunol ; 99(6): e13364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720521

ABSTRACT

Mucosal-associated invariant T-cells (MAIT) are unconventional T-cells with cytotoxic and pro-inflammatory properties. Previous research has reported contradictory findings on their role in cancerogenesis with data being even scarcer in haematological malignancies. Here, we report the results of a systematic analysis of MAIT cells in treatment-naïve patients with a broad range of haematological malignancies. We analysed peripheral blood of 204 patients and 50 healthy subjects. The pool of haematological patients had a statistically significant lower both the absolute value (median values, 0.01 × 109/L vs. 0.05 × 109/L) of MAIT cells and their percentage (median values 0.94% vs. 2.56%) among T-cells compared to the control group. Separate analysis showed that the decrease in the absolute number of MAIT cells is significant in patients with acute myeloid leukaemia, myeloproliferative neoplasms, plasma cell myeloma, B-cell non-Hodgkin lymphomas, otherwise not specified, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma compared to the control population. Furthermore, in haematological malignancies, MAIT cells overexpress PD-1 (average values, 51.7% vs. 6.7%), HLA-DR (average values, 40.2% vs. 7%), CD38 (average values, 25.9% vs. 4.9%) and CD69 (average values, 40.2% vs. 9.2%). Similar results were obtained when comparing patients with individual malignancies to the control population. Our data show that the depletion of circulating MAIT cells is a common observation in a broad spectrum of haematological malignancies. In addition to their reduced numbers, MAIT cells acquire an activated/exhausted phenotype.


Subject(s)
Hematologic Neoplasms , Mucosal-Associated Invariant T Cells , Programmed Cell Death 1 Receptor , Humans , Mucosal-Associated Invariant T Cells/immunology , Hematologic Neoplasms/immunology , Male , Female , Middle Aged , Aged , Adult , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Antigens, CD/metabolism , Aged, 80 and over , Antigens, Differentiation, T-Lymphocyte/metabolism , Lymphocyte Count , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/immunology , Immunophenotyping , Young Adult , Membrane Glycoproteins/immunology , Lectins, C-Type
7.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
8.
BMB Rep ; 57(4): 188-193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38449302

ABSTRACT

Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis. [BMB Reports 2024; 57(4): 188-193].


Subject(s)
Antibodies, Monoclonal , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Humans , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Animals , Mice , Cell Proliferation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/immunology , Neovascularization, Pathologic/metabolism , Mice, Nude
9.
Blood ; 143(16): 1599-1615, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38394668

ABSTRACT

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Subject(s)
Interferon-gamma , Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , Humans , Mice , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Antigens, CD34/metabolism , Cell Line, Tumor , Hematopoietic Stem Cells/metabolism , Interferon-gamma/drug effects , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects
11.
Front Immunol ; 14: 1277551, 2023.
Article in English | MEDLINE | ID: mdl-37854605

ABSTRACT

Introduction: Although higher incidence of cancer represents a major burden for obstructive sleep apnea (OSA) patients, the molecular pathways driving this association are not completely understood. Recently, the adhesion receptor P-selectin glycoprotein-1 (PSGL 1) has been identified as a novel immune checkpoint, which are recognized major hallmarks in several types of cancer and have revolutionized cancer therapy. Methods: The expression of PSGL-1 and its ligands VISTA and SIGLEC-5 was assessed in the leucocytes of OSA patients and control subjects exploring the role of intermittent hypoxia (IH) using in vitro models. In addition, PSGL-1 impact on T-cells function was evaluated by ex vivo models. Results: Data showed PSGL-1 expression is upregulated in the T-lymphocytes from patients with severe OSA, indicating a relevant role of hypoxemia mediated by intermittent hypoxia. Besides, results suggest an inhibitory role of PSGL-1 on T-cell proliferation capacity. Finally, the expression of SIGLEC-5 but not VISTA was increased in monocytes from OSA patients, suggesting a regulatory role of intermittent hypoxia. Discussion: In conclusion, PSGL-1 might constitute an additional immune checkpoint leading to T-cell dysfunction in OSA patients, contributing to the disruption of immune surveillance, which might provide biological plausibility to the higher incidence and aggressiveness of several tumors in these patients.


Subject(s)
Membrane Glycoproteins , Sleep Apnea, Obstructive , T-Lymphocytes , Humans , Hypoxia/etiology , Hypoxia/genetics , Hypoxia/immunology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Neoplasms/etiology , Neoplasms/genetics , Neoplasms/immunology , Sialic Acid Binding Immunoglobulin-like Lectins , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463233

ABSTRACT

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Subject(s)
Brain Injuries, Traumatic , Animals , Male , Mice , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/immunology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Immunologic/agonists , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/immunology , Nervous System/drug effects , Nervous System/immunology
13.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232695

ABSTRACT

Bone Marrow Stromal Cell Antigen 2 (BST2) is a type II transmembrane protein expressed on various cell types that tethers the release of viruses. Natural killer (NK) cells express low levels of BST2 under normal conditions but exhibit increased expression of BST2 upon activation. In this study, we show for the first time that murine BST2 can control the cytotoxicity of NK cells. The cytoplasmic tail of murine BST2 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The absence of BST2 on NK cells can enhance their cytotoxicity against tumor cells compared to wild type NK cells. NK cells isolated from NZW mice, which express ITIM-deficient BST2, also showed higher cytotoxicity than wild type NK cells. In addition, we found that galectin-8 and galectin-9 were ligands of BST2, since blocking galectin-8 or -9 with monoclonal antibodies enhanced the cytotoxicity of NK cells. These results suggested that BST2 might be a novel NK cell inhibitory receptor as it was involved in regulating NK cell cytotoxicity through its interaction with galectins.


Subject(s)
Bone Marrow Stromal Antigen 2 , Cytotoxicity, Immunologic , Killer Cells, Natural , Animals , Antibodies, Monoclonal/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Bone Marrow Stromal Antigen 2/genetics , Bone Marrow Stromal Antigen 2/immunology , Carrier Proteins/immunology , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Galectins/immunology , Killer Cells, Natural/immunology , Ligands , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Tyrosine/metabolism
14.
N Engl J Med ; 387(10): 894-904, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36069871

ABSTRACT

BACKGROUND: Antibody-binding of blood dendritic cell antigen 2 (BDCA2), which is expressed exclusively on plasmacytoid dendritic cells, suppresses the production of type I interferon that is involved in the pathogenesis of systemic lupus erythematosus (SLE). The safety and efficacy of subcutaneous litifilimab, a humanized monoclonal antibody that binds to BDCA2, in patients with SLE have not been extensively studied. METHODS: We conducted a phase 2 trial of litifilimab involving participants with SLE. The initial trial design called for randomly assigning participants to receive litifilimab (at a dose of 50, 150, or 450 mg) or placebo administered subcutaneously at weeks 0, 2, 4, 8, 12, 16, and 20, with the primary end point of evaluating cutaneous lupus activity. The trial design was subsequently modified; adults with SLE, arthritis, and active skin disease were randomly assigned to receive either litifilimab at a dose of 450 mg or placebo. The revised primary end point was the change from baseline in the total number of active joints (defined as the sum of the swollen joints and the tender joints) at week 24. Secondary end points were changes in cutaneous and global disease activity. Safety was also assessed. RESULTS: A total of 334 adults were assessed for eligibility, and 132 underwent randomization (64 were assigned to receive 450-mg litifilimab, 6 to receive 150-mg litifilimab, 6 to receive 50-mg litifilimab, and 56 to receive placebo). The primary analysis was conducted in the 102 participants who had received 450-mg litifilimab or placebo and had at least four tender and at least four swollen joints. The mean (±SD) baseline number of active joints was 19.0±8.4 in the litifilimab group and 21.6±8.5 in the placebo group. The least-squares mean (±SE) change from baseline to week 24 in the total number of active joints was -15.0±1.2 with litifilimab and -11.6±1.3 with placebo (mean difference, -3.4; 95% confidence interval, -6.7 to -0.2; P = 0.04). Most of the secondary end points did not support the results of the analysis of the primary end point. Receipt of litifilimab was associated with adverse events, including two cases of herpes zoster and one case of herpes keratitis. CONCLUSIONS: In a phase 2 trial involving participants with SLE, litifilimab was associated with a greater reduction from baseline in the number of swollen and tender joints than placebo over a period of 24 weeks. Longer and larger trials are required to determine the safety and efficacy of litifilimab for the treatment of SLE. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Subject(s)
Antibodies, Monoclonal, Humanized , Lectins, C-Type , Lupus Erythematosus, Systemic , Membrane Glycoproteins , Receptors, Immunologic , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Double-Blind Method , Humans , Lectins, C-Type/immunology , Lupus Erythematosus, Systemic/drug therapy , Membrane Glycoproteins/immunology , Receptors, Immunologic/immunology , Skin Diseases , Treatment Outcome
15.
Front Immunol ; 13: 909831, 2022.
Article in English | MEDLINE | ID: mdl-35911674

ABSTRACT

Background: Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method: Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings: Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation: Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants' monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.


Subject(s)
Antimalarials , Malaria, Falciparum , Membrane Glycoproteins , Placenta , Receptors, Immunologic , Antibodies, Protozoan , Female , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Interleukin-10 , Leukocyte Immunoglobulin-like Receptor B1/genetics , Leukocyte Immunoglobulin-like Receptor B1/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Monocytes/metabolism , Placenta/parasitology , Plasmodium falciparum , Pregnancy , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology
16.
Glia ; 70(12): 2290-2308, 2022 12.
Article in English | MEDLINE | ID: mdl-35912412

ABSTRACT

The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists.


Subject(s)
Alzheimer Disease , Liposomes , Membrane Glycoproteins/immunology , Receptors, Immunologic/immunology , Alzheimer Disease/metabolism , Antibodies/metabolism , Brain/metabolism , Humans , Ligands , Microglia/metabolism , Myeloid Cells/metabolism , Phosphatidylserines/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism
17.
N Engl J Med ; 387(4): 321-331, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35939578

ABSTRACT

BACKGROUND: Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS: In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS: A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS: In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Subject(s)
Antibodies, Monoclonal, Humanized , Lectins, C-Type , Lupus Erythematosus, Cutaneous , Membrane Glycoproteins , Receptors, Immunologic , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dose-Response Relationship, Drug , Double-Blind Method , Herpes Zoster/etiology , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Lupus Erythematosus, Cutaneous/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Severity of Illness Index , Treatment Outcome
18.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886985

ABSTRACT

Recently, it was demonstrated that the expression of BMAL1 was decreased in the endometrium of women suffering from recurrent spontaneous abortion. To investigate the pathological roles of uterine clock genes during pregnancy, we produced conditional deletion of uterine Bmal1 (cKO) mice and found that cKO mice could receive embryo implantation but not sustain pregnancy. Gene ontology analysis of microarray suggested that uterine NK (uNK) cell function was suppressed in cKO mice. Histological examination revealed the poor formation of maternal vascular spaces in the placenta. In contrast to WT mice, uNK cells in the spongiotrophoblast layer, where maternal uNK cells are directly in contact with fetal trophoblast, hardly expressed an immunosuppressive NK marker, CD161, in cKO mice. By progesterone supplementation, pregnancy could be sustained until the end of pregnancy in some cKO mice. Although this treatment did not improve the structural abnormalities of the placenta, it recruited CD161-positive NK cells into the spongiotrophoblast layer in cKO mice. These findings indicate that the uterine clock system may be critical for pregnancy maintenance after embryo implantation.


Subject(s)
ARNTL Transcription Factors , Fetal Death , Neovascularization, Pathologic , Placenta , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/immunology , Animals , Embryo Implantation/genetics , Female , Fetal Death/etiology , Killer Cells, Natural/immunology , Membrane Glycoproteins/immunology , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Placenta/blood supply , Placenta/immunology , Pregnancy/genetics , Pregnancy/immunology , Pregnancy Complications/genetics , Pregnancy Complications/immunology , Stillbirth/genetics , Uterus/immunology
19.
Front Immunol ; 13: 869768, 2022.
Article in English | MEDLINE | ID: mdl-35774790

ABSTRACT

Chronic viral infections where the antigen persists long-term, induces an exhaustion phenotype in responding T cells. It is now evident that immune checkpoints on T cells including PD-1, CTLA-4, and PSGL-1 (Selplg) are linked with the differentiation of exhausted cells. Chronic T cell receptor signaling induces transcriptional signatures that result in the development of various exhausted T cell subsets, including the stem-like T cell precursor exhausted (Tpex) cells, which can be reinvigorated by immune checkpoint inhibitors (ICIs). While PSGL-1 has been shown to inhibit T cell responses in various disease models, the cell-intrinsic function of PSGL-1 in the differentiation, maintenance, and reinvigoration of exhausted T cells is unknown. We found Selplg-/- T cells had increased expansion in melanoma tumors and in early stages of chronic viral infection. Despite their increase, both WT and Selplg-/- T cells eventually became phenotypically and functionally exhausted. Even though virus-specific Selplg-/- CD4+ and CD8+ T cells were increased at the peak of T cell expansion, they decreased to lower levels than WT T cells at later stages of chronic infection. We found that Selplg-/- CD8+ Tpex (SLAMF6hiTIM3lo, PD-1+TIM3+, TOX+, TCF-1+) cell frequencies and numbers were decreased compared to WT T cells. Importantly, even though virus-specific Selplg-/- CD4+ and CD8+ T cells were lower, they were reinvigorated more effectively than WT T cells after anti-PD-L1 treatment. We found increased SELPLG expression in Hepatitis C-specific CD8+ T cells in patients with chronic infection, whereas these levels were decreased in patients that resolved the infection. Together, our findings showed multiple PSGL-1 regulatory functions in exhausted T cells. We found that PSGL-1 is a cell-intrinsic inhibitor that limits T cells in tumors and in persistently infected hosts. Additionally, while PSGL-1 is linked with T cell exhaustion, its expression was required for their long-term maintenance and optimal differentiation into Tpex cells. Finally, PSGL-1 restrained the reinvigoration potential of exhausted CD4+ and CD8+ T cells during ICI therapy. Our findings highlight that targeting PSGL-1 may have therapeutic potential alone or in combination with other ICIs to reinvigorate exhausted T cells in patients with chronic infections or cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytic Choriomeningitis , Membrane Glycoproteins , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/immunology , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphocytic Choriomeningitis/drug therapy , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology
20.
J Exp Med ; 219(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35819358

ABSTRACT

CD38 is a multifunctional protein expressed on the surface of B cells in healthy individuals but also in B cell malignancies. Previous studies have suggested a connection between CD38 and components of the IgM class B cell antigen receptor (IgM-BCR) and its coreceptor complex. Here, we provide evidence that CD38 is closely associated with CD19 in resting B cells and with the IgM-BCR upon engagement. We show that targeting CD38 with an antibody, or removing this molecule with CRISPR/Cas9, inhibits the association of CD19 with the IgM-BCR, impairing BCR signaling in normal and malignant B cells. Together, our data suggest that CD38 is a new member of the BCR coreceptor complex, where it exerts a modulatory effect on B cell activation upon antigen recognition by regulating CD19. Our study also reveals a new mechanism where α-CD38 antibodies could be a valuable option in therapeutic approaches to B cell malignancies driven by aberrant BCR signaling.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , B-Lymphocytes , Membrane Glycoproteins/immunology , Receptors, Antigen, B-Cell , Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD19/metabolism , Humans , Immunoglobulin M , Lymphocyte Activation , Receptors, Antigen, B-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...