Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.345
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2321600121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771881

ABSTRACT

Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , Peptides , Antigen Presentation/immunology , Humans , Peptides/metabolism , Peptides/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Calreticulin/metabolism , Calreticulin/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Endoplasmic Reticulum/metabolism
2.
Commun Biol ; 7(1): 610, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773269

ABSTRACT

The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.


Subject(s)
Bacterial Proteins , Membrane Transport Proteins , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Bacteria/metabolism , Bacteria/genetics , Signal Transduction , Protein Folding , Artificial Intelligence
3.
Sci Adv ; 10(20): eadn5143, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748788

ABSTRACT

Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.


Subject(s)
Microbiota , Seawater/microbiology , Prokaryotic Cells/metabolism , ATP-Binding Cassette Transporters/metabolism , Substrate Specificity , Phylogeny , Bacteria/metabolism , Bacteria/classification , Aquatic Organisms/metabolism , Membrane Transport Proteins/metabolism , Carbon/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731891

ABSTRACT

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Subject(s)
Lung , Membrane Transport Proteins , Humans , Administration, Inhalation , Lung/metabolism , Membrane Transport Proteins/metabolism , Animals , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Biological Transport
5.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38780621

ABSTRACT

Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.


Subject(s)
Autoimmunity , Animals , Humans , Mice , Autoimmunity/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , DNA Mutational Analysis , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Mutation , Female , Male , Mice, Inbred C57BL , HEK293 Cells , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology
6.
Microb Cell Fact ; 23(1): 152, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790017

ABSTRACT

BACKGROUND: A novel plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 in Klebsiella pneumoniae tremendously threatens the use of convenient therapeutic options in the post-antibiotic era, including the "last-resort" antibiotic tigecycline. RESULTS: In this work, the natural alkaloid harmaline was found to potentiate tigecycline efficacy (4- to 32-fold) against tmexCD1-toprJ1-positive K. pneumoniae, which also thwarted the evolution of tigecycline resistance. Galleria mellonella and mouse infection models in vivo further revealed that harmaline is a promising candidate to reverse tigecycline resistance. Inspiringly, harmaline works synergistically with tigecycline by undermining tmexCD1-toprJ1-mediated multidrug resistance efflux pump function via interactions with TMexCD1-TOprJ1 active residues and dissipation of the proton motive force (PMF), and triggers a vicious cycle of disrupting cell membrane integrity and metabolic homeostasis imbalance. CONCLUSION: These results reveal the potential of harmaline as a novel tigecycline adjuvant to combat hypervirulent K. pneumoniae infections.


Subject(s)
Anti-Bacterial Agents , Drug Repositioning , Harmaline , Klebsiella Infections , Klebsiella pneumoniae , Tigecycline , Klebsiella pneumoniae/drug effects , Tigecycline/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Animals , Mice , Anti-Bacterial Agents/pharmacology , Harmaline/pharmacology , Harmaline/analogs & derivatives , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Female
7.
Microb Biotechnol ; 17(5): e14487, 2024 May.
Article in English | MEDLINE | ID: mdl-38801351

ABSTRACT

Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.


Subject(s)
Anti-Bacterial Agents , Gene Expression Regulation, Bacterial , Membrane Transport Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Humans , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Porins/metabolism , Porins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport
8.
Nature ; 629(8012): 704-709, 2024 May.
Article in English | MEDLINE | ID: mdl-38693257

ABSTRACT

Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.


Subject(s)
Blood-Brain Barrier , Brain , Choline , Cryoelectron Microscopy , Membrane Transport Proteins , Models, Molecular , Choline/metabolism , Animals , Humans , Brain/metabolism , Mice , Blood-Brain Barrier/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Female , Male , Biological Transport
9.
Nature ; 629(8012): 710-716, 2024 May.
Article in English | MEDLINE | ID: mdl-38693265

ABSTRACT

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Models, Molecular , Humans , Choline/metabolism , Binding Sites , Ethanolamine/metabolism , Ethanolamine/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Phosphatidylethanolamines/metabolism , Biological Transport , Animals , Phosphatidylcholines/metabolism , Phosphatidylcholines/chemistry , Phosphorylation
10.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791559

ABSTRACT

This editorial summarizes the seven scientific papers published in the Special Issue "Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2 [...].


Subject(s)
Homeostasis , Membrane Transport Proteins , Humans , Membrane Transport Proteins/metabolism , Animals , Biological Transport
11.
Int J Mycobacteriol ; 13(1): 7-14, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771273

ABSTRACT

BACKGROUND: The overexpression of efflux pumps (Eps) was reported to contribute to multidrug resistant tuberculosis (MDR-TB). Increases in Eps that expel structurally unrelated drugs contribute to reduced susceptibility by decreasing the intracellular concentration of antibiotics. In the present study, an association of mycobacterial membrane protein (MmpS5-MmpL5) Ep and its gene regulator (Rv0678) was investigated in MDR-tuberculosis isolates. METHODS: MTB strains were isolated from patients at two different intervals, i.e., once when they had persistent symptoms despite 3-15 ≥ months of treatment and once when they had started new combination therapy ≥2-3 months. Sputum specimens were subjected to Xpert MTB/rifampicin test and then further susceptibility testing using proportional method and multiplex polymerase chain reaction (PCR) were performed on them. The isolates were characterized using both 16S-23S RNA and hsp65 genes spacer (PCR-restriction fragment length polymorphism). Whole-genome sequencing (WGS) was investigated on two isolates from culture-positive specimen per patient. The protein structure was simulated using the SWISS-MODEL. The input format used for this web server was FASTA (amino acid sequence). Protein structure was also analysis using Ramachandran plot. RESULTS: WGS documented deletion, insertion, and substitution in transmembrane transport protein MmpL5 (Rv0676) of Eps. Majority of the studied isolates (n = 12; 92.3%) showed a unique deletion mutation at three positions: (a) from amino acid number 771 (isoleucine) to 776 (valine), (b) from amino acid number 785 (valine) to 793 (histidine), and (c) from amino acid number 798 (leucine) to 806 (glycine)." One isolate (7.6%) had no deletion mutation. In all isolates (n = 13; 100%), a large insertion mutation consisting of 94 amino acid was observed "from amino acid number 846 (isoleucine) to amino acid number 939 (leucine)". Thirty-eight substitutions in Rv0676 were detected, of which 92.3% were identical in the studied isolates. WGS of mycobacterial membrane proteins (MmpS5; Rv0677) and its gene regulator (Rv0678) documented no deletion, insertion, and substitution. No differences were observed between MmpS5-MmpL5 and its gene regulator in isolates that were collected at different intervals. CONCLUSIONS: Significant genetic mutation like insertion, deletion, and substitution within transmembrane transport protein MmpL5 (Rv0676) can change the functional balance of Eps and cause a reduction in drug susceptibility. This is the first report documenting a unique amino acid mutation (insertion and deletion ≥4-94) in Rv0676 among drug-resistant MTB. We suggest the changes in Mmpl5 (Rv0676) might occurred due to in-vivo sub-therapeutic drug stress within the host cell. Changes in MmpL5 are stable and detected through subsequent culture-positive specimens.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing , Sputum/microbiology
12.
Curr Biol ; 34(7): R267-R268, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38593766

ABSTRACT

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Subject(s)
Escherichia coli Proteins , Twin-Arginine-Translocation System , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Escherichia coli Proteins/metabolism , Twin-Arginine-Translocation System/metabolism , Cell Membrane/metabolism , Arginine/metabolism , Protein Transport , Protein Sorting Signals , Bacterial Proteins/metabolism
13.
Toxicol Lett ; 396: 36-47, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38663832

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRß, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.


Subject(s)
Choline Deficiency , Cytochrome P-450 Enzyme System , Liver , Non-alcoholic Fatty Liver Disease , Rats, Sprague-Dawley , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Male , Liver/metabolism , Liver/enzymology , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Choline Deficiency/complications , Disease Models, Animal , RNA, Messenger/metabolism , RNA, Messenger/genetics , Methionine/metabolism , Rats , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Gene Expression Regulation, Enzymologic
14.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
15.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581583

ABSTRACT

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Subject(s)
Membrane Transport Proteins , Receptors, Virus , Cats , Animals , Membrane Transport Proteins/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism
16.
BMC Plant Biol ; 24(1): 322, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654173

ABSTRACT

BACKGROUND: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.


Subject(s)
Membrane Transport Proteins , Plant Leaves , Plant Proteins , Pteridaceae , CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pteridaceae/genetics , Pteridaceae/metabolism , Pteridaceae/growth & development
17.
New Phytol ; 242(6): 2620-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600023

ABSTRACT

Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.


Subject(s)
Gene Expression Regulation, Plant , Gene Knockdown Techniques , Iron , Oryza , Plant Proteins , Xylem , Xylem/metabolism , Oryza/genetics , Oryza/metabolism , Iron/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Transport , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Plant Leaves/metabolism
18.
Methods Enzymol ; 696: 109-154, 2024.
Article in English | MEDLINE | ID: mdl-38658077

ABSTRACT

The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.


Subject(s)
Biochemistry , Computational Biology , Fluorides , Molecular Dynamics Simulation , Fluorides/metabolism , Membrane Transport Proteins/metabolism , Ion Transport/physiology , Chloride Channels/chemistry , Chloride Channels/metabolism , Electrophysiology , Biochemistry/methods , Computational Biology/methods , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport, Active/physiology
19.
ACS Infect Dis ; 10(5): 1458-1482, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38661541

ABSTRACT

Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Membrane Transport Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Humans
20.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38636190

ABSTRACT

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Subject(s)
Herb-Drug Interactions , Intestinal Absorption , Intestinal Mucosa , Levofloxacin , Rats, Sprague-Dawley , Animals , Levofloxacin/pharmacology , Levofloxacin/pharmacokinetics , Intestinal Absorption/drug effects , Rats , Male , Intestinal Mucosa/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...