Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 507
Filter
1.
Bull Exp Biol Med ; 177(1): 10-14, 2024 May.
Article in English | MEDLINE | ID: mdl-38954295

ABSTRACT

Spatial learning, memory, and reactivity of the hypothalamic-pituitary-adrenocortical system (HPA axis) were studied in adult male rats, whose mothers during pregnancy were subjected to acute moderate normobaric hypoxia, or repeated injections of buspirone, an agonist of type 1A serotonergic receptors (5HT1A), or their combination. Prenatal treatment with buspirone in rats with prenatal hypoxia impaired learning ability during the first day of 5-day training. A decrease in the effectiveness of long-term memory in comparison with short-term memory was revealed in two groups of rats: prenatal treatment with buspirone in combination with hypoxia and injection of physiological saline without hypoxia. The effectiveness of long-term memory and the level of corticosterone in response to stress did not differ between the groups, which can indicate adaptation of the 5HT1A receptor and the HPA axis to the prenatal buspirone and normobaric hypoxia during ontogeny.


Subject(s)
Buspirone , Hypothalamo-Hypophyseal System , Hypoxia , Prenatal Exposure Delayed Effects , Buspirone/pharmacology , Animals , Pregnancy , Female , Rats , Male , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Hypoxia/physiopathology , Hypoxia/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Corticosterone/blood , Corticosterone/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Cognition/drug effects , Cognition/physiology , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Maze Learning/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Stress, Physiological/drug effects
2.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928457

ABSTRACT

The objective of this study was to assess the impact of acute and chronic treatment with oxcarbazepine on its anticonvulsant activity, neurological adverse effects, and protective index in mice. Oxcarbazepine was administered in four protocols: once or twice daily for one week (7 × 1 or 7 × 2) and once or twice daily for two weeks (14 × 1 or 14 × 2). A single dose of the drug was employed as a control. The anticonvulsant effect was evaluated in the maximal electroshock test in mice. Motor and long-term memory impairment were assessed using the chimney test and the passive avoidance task, respectively. The concentrations of oxcarbazepine in the brain and plasma were determined via high-performance liquid chromatography. Two weeks of oxcarbazepine treatment resulted in a significant reduction in the anticonvulsant (in the 14 × 1; 14 × 2 protocols) and neurotoxic (in the 14 × 2 schedule) effects of this drug. In contrast, the protective index for oxcarbazepine in the 14 × 2 protocol was found to be lower than that calculated for the control. No significant deficits in memory or motor coordination were observed following repeated administration of oxcarbazepine. The plasma and brain concentrations of this anticonvulsant were found to be significantly higher in the one-week protocols. Chronic treatment with oxcarbazepine may result in the development of tolerance to its anticonvulsant and neurotoxic effects, which appears to be dependent on pharmacodynamic mechanisms.


Subject(s)
Anticonvulsants , Disease Models, Animal , Electroshock , Oxcarbazepine , Animals , Oxcarbazepine/pharmacology , Oxcarbazepine/therapeutic use , Mice , Anticonvulsants/pharmacology , Male , Seizures/drug therapy , Brain/drug effects , Brain/metabolism , Memory, Long-Term/drug effects , Carbamazepine/analogs & derivatives , Carbamazepine/pharmacology , Avoidance Learning/drug effects
3.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762038

ABSTRACT

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Subject(s)
Aggression , Dizocilpine Maleate , Memory Consolidation , Memory, Long-Term , Zebrafish , Animals , Zebrafish/physiology , Male , Aggression/physiology , Aggression/drug effects , Memory Consolidation/physiology , Memory Consolidation/drug effects , Dizocilpine Maleate/pharmacology , Memory, Long-Term/physiology , Memory, Long-Term/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Social Behavior , Excitatory Amino Acid Antagonists/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology
4.
Neuropharmacology ; 252: 109960, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631563

ABSTRACT

Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.


Subject(s)
Hippocampus , Mice, Inbred C57BL , Pyrazoles , Small-Conductance Calcium-Activated Potassium Channels , Animals , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Thiazoles/pharmacology , Indoles/pharmacology , Pyrimidines/pharmacology , Memory/drug effects , Memory/physiology , Fear/drug effects , Fear/physiology , Memory, Long-Term/drug effects , Memory, Long-Term/physiology
5.
Mol Psychiatry ; 29(3): 730-741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38221548

ABSTRACT

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Subject(s)
Basolateral Nuclear Complex , Cocaine , Memory Consolidation , Neurons , Prefrontal Cortex , Animals , Memory Consolidation/drug effects , Memory Consolidation/physiology , Cocaine/pharmacology , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Neurons/metabolism , Neurons/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Cues , Rats, Sprague-Dawley , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Self Administration , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/physiology , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/physiopathology , Memory/drug effects , Memory/physiology
6.
Mol Psychiatry ; 29(3): 718-729, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123728

ABSTRACT

Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.


Subject(s)
Corticosterone , Disease Models, Animal , Hippocampus , Memory, Long-Term , Nociceptin Receptor , Nociceptin , Opioid Peptides , Receptors, Opioid , Stress, Psychological , Animals , Receptors, Opioid/metabolism , Mice , Stress, Psychological/metabolism , Male , Hippocampus/metabolism , Hippocampus/drug effects , Opioid Peptides/metabolism , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Narcotic Antagonists/pharmacology , Mice, Inbred C57BL , Cognition/drug effects , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy
7.
Proc Natl Acad Sci U S A ; 119(22): e2116797119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35613054

ABSTRACT

Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994­mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.


Subject(s)
Benzamides , Dentate Gyrus , Histone Deacetylase Inhibitors , Memory, Long-Term , Phenylenediamines , Animals , Benzamides/pharmacology , Cell Communication/drug effects , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Dentate Gyrus/physiology , Histone Deacetylase Inhibitors/pharmacology , Memory, Long-Term/drug effects , Mice , Neuronal Plasticity , Neurons/drug effects , Neurons/metabolism , Phenylenediamines/pharmacology , RNA-Seq , Single-Cell Analysis
8.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163003

ABSTRACT

An early and persistent sign of Alzheimer's disease (AD) is glucose hypometabolism, which can be evaluated by positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Cannabidiol has demonstrated neuroprotective and anti-inflammatory properties but has not been evaluated by PET imaging in an AD model. Intracerebroventricular (icv) injection of streptozotocin (STZ) is a validated model for hypometabolism observed in AD. This proof-of-concept study evaluated the effect of cannabidiol treatment in the brain glucose metabolism of an icv-STZ AD model by PET imaging. Wistar male rats received 3 mg/kg of STZ and [18F]FDG PET images were acquired before and 7 days after STZ injection. Animals were treated with intraperitoneal cannabidiol (20 mg/kg-STZ-cannabidiol) or saline (STZ-saline) for one week. Novel object recognition was performed to evaluate short-term and long-term memory. [18F]FDG uptake in the whole brain was significantly lower in the STZ-saline group. Voxel-based analysis revealed a hypometabolism cluster close to the lateral ventricle, which was smaller in STZ-cannabidiol animals. The brain regions with more evident hypometabolism were the striatum, motor cortex, hippocampus, and thalamus, which was not observed in STZ-cannabidiol animals. In addition, STZ-cannabidiol animals revealed no changes in memory index. Thus, this study suggests that cannabidiol could be an early treatment for the neurodegenerative process observed in AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Cannabidiol/administration & dosage , Glucose/metabolism , Streptozocin/adverse effects , Alzheimer Disease/chemically induced , Alzheimer Disease/diagnostic imaging , Animals , Brain/diagnostic imaging , Brain/metabolism , Cannabidiol/pharmacology , Disease Models, Animal , Fluorodeoxyglucose F18/administration & dosage , Injections, Intraperitoneal , Male , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Positron-Emission Tomography , Proof of Concept Study , Rats , Rats, Wistar
9.
Behav Brain Res ; 416: 113578, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34508769

ABSTRACT

Positive allosteric modulators (PAMs) of α5GABAA receptors (α5GABAARs) are emerging as potential therapeutics for a range of neuropsychiatric disorders. However, their role in memory processing of healthy animals is not sufficiently examined. We tested the effects of MP-III-022 (1 mg/kg, 2.5 mg/kg and 10 mg/kg), a PAM known to be selective for α5GABAARs and devoid of prominent side-effects, in different behavioral paradigms (Morris water maze, novel object recognition test and social novelty discrimination) and on GABRA5 expression in Wistar rats, 30 min and 24 h after intraperitoneal treatment administration. The lowest dose tested worsened short-term object memory. The same dose, administered two times in a span of 24 h, improved spatial and impaired object and, at a trend level, social memory. The highest dose had a detrimental effect on all types of long-term memory (object memory at a trend level) and short-term spatial memory, but improved short-term object and social memory. Distinct sets of expression changes were detected in both prefrontal cortex and two regions of the hippocampus, but the latter ones could be assessed as more consequential. An increase of GABRA5 mRNA in CA2 occurred in parallel with improvement of object and social, but impairment of spatial memory, while the opposite happened with a trend level change in CA1. Our study demonstrates the variability of the roles of the α5GABAAR based on its level of expression and localization, in dependence on the type and protocol of cognitive tasks, as well as the respective timing of pharmacological modulation and testing.


Subject(s)
Hippocampus/drug effects , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Prefrontal Cortex/drug effects , Receptors, GABA-A/metabolism , Spatial Memory/drug effects , Animals , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar , Recognition, Psychology/drug effects
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903651

ABSTRACT

We provide evidence that human sleep is a competitive arena in which cognitive domains vie for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that long-term memory and working memory are served by distinct offline neural mechanisms that are mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we determined the central activity has greater causal influence over autonomic activity, and the magnitude of this influence during sleep produced a behavioral trade-off between offline long-term and working memory processing. These findings suggest a sleep switch mechanism that toggles between central sigma-dependent long-term memory and autonomic vagal-dependent working memory processing.


Subject(s)
Memory, Long-Term/physiology , Memory, Short-Term/physiology , Sleep/physiology , Adult , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Female , Hippocampus/drug effects , Hippocampus/physiology , Humans , Male , Memory Consolidation/drug effects , Memory Consolidation/physiology , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Models, Neurological , Neural Pathways , Sleep/drug effects , Sleep Stages/drug effects , Sleep Stages/physiology , Zolpidem/pharmacology
11.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Article in English | MEDLINE | ID: mdl-34648950

ABSTRACT

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Basolateral Nuclear Complex/physiology , Clenbuterol/pharmacology , Conditioning, Operant/physiology , Cytoskeletal Proteins/physiology , Hippocampus/physiology , Memory/physiology , Nerve Tissue Proteins/physiology , Synapses/physiology , Animals , Basolateral Nuclear Complex/drug effects , Conditioning, Operant/drug effects , Cytoskeletal Proteins/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation/physiology , Long-Term Potentiation/radiation effects , Male , Memory/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Synapses/drug effects
12.
Nat Commun ; 12(1): 6054, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663784

ABSTRACT

It is commonly assumed that episodic memories undergo a time-dependent systems consolidation process, during which hippocampus-dependent memories eventually become reliant on neocortical areas. Here we show that systems consolidation dynamics can be experimentally manipulated and even reversed. We combined a single pharmacological elevation of post-encoding noradrenergic activity through the α2-adrenoceptor antagonist yohimbine with fMRI scanning both during encoding and recognition testing either 1 or 28 days later. We show that yohimbine administration, in contrast to placebo, leads to a time-dependent increase in hippocampal activity and multivariate encoding-retrieval pattern similarity, an indicator of episodic reinstatement, between 1 and 28 days. This is accompanied by a time-dependent decrease in neocortical activity. Behaviorally, these neural changes are linked to a reduced memory decline over time after yohimbine intake. These findings indicate that noradrenergic activity shortly after encoding may alter and even reverse systems consolidation in humans, thus maintaining vividness of memories over time.


Subject(s)
Arousal , Hippocampus/drug effects , Norepinephrine/pharmacology , Yohimbine/pharmacology , Adult , Double-Blind Method , Female , Hippocampus/physiology , Humans , Magnetic Resonance Imaging , Male , Memory Consolidation/drug effects , Memory, Episodic , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Young Adult
13.
Bull Exp Biol Med ; 171(3): 293-296, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34297286

ABSTRACT

The brain mechanisms underlying conditioned aversion learning in birds were studied using experimental model in young chicks. The learning consisted of a conditioning stimulus presentation followed by a delayed sickness-inducing treatment reinforcement. Intraventricular administration of an NMDA receptor antagonist MK-801, a protein synthesis inhibitor anisomycin, or an inhibitor of glycoprotein fucosylation 2-deoxygalactose just before presentation of the conditioning stimulus prevented aversion learning. Injections of the same chemicals before reinforcement did not affect learning. The obtained results show that the investigated mechanisms underlying aversion learning were critical at the early stage of memory formation. Later processes of association of the conditioning stimulus with the reinforcement appear to be independent of the NMDA receptors and protein synthesis/glycosylation, or alternatively to be located in other brain areas.


Subject(s)
Avoidance Learning/drug effects , Conditioning, Psychological/drug effects , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Memory, Long-Term/drug effects , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Animals, Newborn , Anisomycin/pharmacology , Avoidance Learning/physiology , Brain/drug effects , Brain/metabolism , Chickens , Conditioning, Psychological/physiology , Fucose/pharmacology , Gene Expression , Glycosylation/drug effects , Injections, Intraventricular , Lithium Chloride/pharmacology , Memory, Long-Term/physiology , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Reinforcement, Psychology
14.
Chem Biol Interact ; 345: 109532, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34058180

ABSTRACT

The risk of exposure to toxic metals is a known concern to human populations. The overexposure to Mn can lead to a pathological condition, with symptoms similar to Parkinson's disease. Although toxicity of Mn has been reported, studies in neonates are scarce but necessary, as Mn can cross biological barriers. The present study evaluated if chronic perinatal exposure to Mn at low doses lead to neurotoxic effects in mice, after direct and indirect exposure. Couples of mice were exposed to Mn (0.013, 0.13, and 1.3 mg kg-1.day-1) for 60 days prior to mating, as well as during gestation and lactation. The offspring was distributed into two groups: animals that were not exposed after weaning - parental exposure only (PE); and animals subject to additional 60-day exposure through gavages after weaning - parental and direct exposure (PDE). Neurological effects were evaluated by Mn quantification, behavior tests and biochemical markers in the brain. PDE animals had alterations in short/long-term memory and increased anxiety-like behavior. Exposure to Mn triggered a decrease of glutathione-s-transferase and increase of cholinesterase activity in different regions of the brain. These findings highlight the risk of exposure to low doses of Mn over a generation and at early stages of development.


Subject(s)
Behavior, Animal/drug effects , Manganese/toxicity , Neurochemistry , Neurotoxins/toxicity , Animals , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Female , Glutathione Transferase/metabolism , Male , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Mice , Sexual Behavior, Animal/drug effects
15.
Cell Rep Med ; 2(4): 100231, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948569

ABSTRACT

Cranial irradiation (IR) is an effective adjuvant therapy in the treatment of childhood brain tumors but results in long-lasting cognitive deficits associated with impaired neurogenesis, as evidenced in rodent models. Metformin has been shown to expand the endogenous neural stem cell (NSC) pool and promote neurogenesis under physiological conditions and in response to neonatal brain injury, suggesting a potential role in neurorepair. Here, we assess whether metformin pretreatment, a clinically feasible treatment for children receiving cranial IR, promotes neurorepair in a mouse cranial IR model. Using immunofluorescence and the in vitro neurosphere assay, we show that NSCs are depleted by cranial IR but spontaneously recover, although deficits to proliferative neuroblasts persist. Metformin pretreatment enhances the recovery of neurogenesis, attenuates the microglial response, and promotes recovery of long-term olfactory memory. These findings indicate that metformin is a promising candidate for further preclinical and clinical investigations of neurorepair in childhood brain injuries.


Subject(s)
Brain Injuries/drug therapy , Cognitive Dysfunction/drug therapy , Memory, Long-Term/drug effects , Metformin/pharmacology , Neural Stem Cells/drug effects , Animals , Brain/drug effects , Brain/pathology , Brain Injuries/pathology , Cognitive Dysfunction/pathology , Cranial Irradiation/methods , Disease Models, Animal , Male , Metformin/administration & dosage , Mice, Inbred C57BL , Neural Stem Cells/pathology , Neurogenesis/drug effects
16.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1641-1650, 2021 08.
Article in English | MEDLINE | ID: mdl-33829293

ABSTRACT

This study aim to examine the hypothesis that repetitive painful stimuli during infancy will alter pain sensitivity and impair learning and memory during adulthood and that saccharin will prevent this through its analgesic effect. Naltrexone is used to examine if saccharin effect is mediated via the endogenous opioid system. Pain in rat pups was induced via needle pricks of the paws on day 1 of their birth (P0). All treatments/ manipulations started on day 1 and continued for 2 weeks. The radial arm water maze (RAWM) test was used to assess learning and memory. Pain threshold through foot-withdrawal response to a hot plate was also assessed. At the end of behavioral tests, animals were killed, hippocampus was dissected, and hippocampal levels of ß-endorphin, enkephalin, and brain-derived neurotropic factor (BDNF) were assessed using ELISA. Naltrexone and saccharin combined normalized noxious stimulation induced increased pain sensitivity later in life. Furthermore, naltrexone and saccharin together mitigated the deficiency in learning and memory induced by noxious stimulation. Saccharin treatment prevented reduction in hippocampal enkephalin. Additionally, saccharin prevented hippocampal noxious stimulation induced BDNF decrement. Saccharin prevented long-term memory impairment during adulthood induced by repeated neonatal pain via mechanisms that appear to involve BDNF. Interestingly, naltrexone did not antagonize the effects of saccharin, instead naltrexone augmented saccharin effects.


Subject(s)
Naltrexone/pharmacology , Pain Threshold/drug effects , Pain/drug therapy , Saccharin/pharmacology , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Enkephalins/metabolism , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory, Long-Term/drug effects , Naltrexone/administration & dosage , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacology , Pain/physiopathology , Rats , Rats, Wistar , Saccharin/administration & dosage
17.
Article in English | MEDLINE | ID: mdl-33881581

ABSTRACT

When two male crayfish encounter, agonistic bouts are initiated and a winner-loser relationship is established. Larger animals are more likely to win with their physical advantage, but they are frequently beaten by small dominant animals with previous winning experience. This winner effect remains for several days. In mammals, anxiety impairs learning and induces memory forgetting. In this study, dominant crayfish were exposed to electrical shocks two days after their first win, after which they were paired with large or small naive opponents the following day. Our results showed that electrical shock-applied dominant animals were beaten by large naive opponents, but overcame small naive opponents, suggesting that electrical shocks cause animals to forget their previous winner effect. Electrical shocks appeared to elicit serotonin-mediated anxiety since electrical shocks had no effect on mianserin-injected dominant animals. A 0.5 µM serotonin injection induced a caused anxiety-like reaction, while a 1.0 µM serotonin injection-induced no changes in posture and walking activity. For pairings between dominant and naive animals 1 day after serotonin injection, 0.5 µM serotonin caused similar forgetting of the winner effect, but 1.0 µM serotonin had no effect. Serotonin of low concentrations mediated anxiety and stimulated forgetting of the winner's memory.


Subject(s)
Anxiety , Behavior, Animal/physiology , Memory, Long-Term/physiology , Animals , Anxiety/etiology , Astacoidea , Male , Memory, Long-Term/drug effects , Serotonin/pharmacology , Social Dominance , Stress, Psychological/complications
18.
Behav Brain Res ; 408: 113283, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33819530

ABSTRACT

Deficits in olfaction are associated with neurodegenerative disorders such as Alzheimer's disease. A recent study reported that intranasal zinc sulfate (ZnSO4)-treated mice show olfaction and memory deficits. However, it remains unknown whether olfaction deficit-induced learning and memory impairment is associated with the cholinergic system in the brain. In this study, we evaluated olfactory function by the buried food find test, and learning and memory function by the Y-maze and passive avoidance tests in ZnSO4-treated mice. The expression of choline acetyltransferase (ChAT) protein in the olfactory bulb (OB), prefrontal cortex, hippocampus, and amygdala was assessed by western blotting. Moreover, we observed the effect of the acetylcholinesterase inhibitor physostigmine on ZnSO4-induced learning and memory deficits. We found that intranasal ZnSO4-treated mice exhibited olfactory dysfunction, while this change was recovered on day 14 after treatment. Both short-term and long-term learning and memory were impaired on days 4 and 7 after treatment with ZnSO4, whereas the former, but not the latter, was recovered on day 14 after treatment. A significant correlation was observed between olfactory function and short-term memory, but not long-term memory. Treatment with ZnSO4 decreased the ChAT level in the OB on day 4, and increased and decreased the ChAT levels in the OB and hippocampus on day 7, respectively. Physostigmine improved the ZnSO4-induced deficit in short-term, but not long-term, memory. Taken together, the present results suggest that short-term memory may be closely associated with olfactory function via the cholinergic system.


Subject(s)
Choline O-Acetyltransferase/metabolism , Cholinesterase Inhibitors/pharmacology , Hippocampus , Memory Disorders , Memory, Long-Term , Memory, Short-Term , Olfaction Disorders , Olfactory Bulb , Animals , Astringents/pharmacology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Mice , Olfaction Disorders/chemically induced , Olfaction Disorders/drug therapy , Olfaction Disorders/physiopathology , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Physostigmine/pharmacology , Zinc Sulfate/pharmacology
19.
Aging Cell ; 20(3): e13332, 2021 03.
Article in English | MEDLINE | ID: mdl-33709472

ABSTRACT

We previously demonstrated that ibrutinib modulates LPS-induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aß plaque levels by promoting the non-amyloidogenic pathway of APP cleavage, decreased Aß-induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin-dependent kinase-5 (p-CDK5). Importantly, tau-mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long-term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short- and long-term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3-kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD-associated pathology and cognitive function and may be a potential therapy for AD.


Subject(s)
Adenine/analogs & derivatives , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognition , Inflammation/pathology , Piperidines/pharmacology , tau Proteins/metabolism , Adenine/pharmacology , Animals , Brain/drug effects , Brain/physiopathology , Cognition/drug effects , Cyclin-Dependent Kinase 5/metabolism , Cytokines/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Gliosis/complications , Inflammation Mediators/metabolism , Memory, Long-Term/drug effects , Mice, Transgenic , Neurogenesis/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Phosphorylation/drug effects , Plaque, Amyloid/pathology
20.
Cell Rep ; 34(11): 108871, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730583

ABSTRACT

The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.


Subject(s)
Drosophila melanogaster/physiology , Memory Consolidation/physiology , Mushroom Bodies/innervation , Nerve Net/physiology , Animals , Axons/drug effects , Axons/physiology , Drosophila melanogaster/drug effects , Drosophila melanogaster/ultrastructure , Memory Consolidation/drug effects , Memory, Long-Term/drug effects , Mushroom Bodies/drug effects , Mushroom Bodies/ultrastructure , Nerve Net/drug effects , Nerve Net/ultrastructure , Neuronal Plasticity/drug effects , Odorants , Oleic Acids/pharmacology , Pheromones/pharmacology , Synapses/drug effects , Synapses/physiology , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...