Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.408
Filter
1.
BMC Psychol ; 12(1): 325, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831358

ABSTRACT

BACKGROUND: Regular physical activity has consistently shown promise in improving cognitive functioning among children. However, there is a shortage of comprehensive studies that delve into these benefits across various cognitive domains. This preliminary investigation aimed to discern potential disparities in cognitive performance between active and sedentary children, with a specific focus on inhibitory control, cognitive flexibility, and visuo-spatial working memory abilities. METHODS: The study employed a cross-sectional design encompassing 26 children (mean age 9.53 ± 2.20 years), categorized into two groups: Active and Sedentary. Executive functions were assessed using the NEPSY-II, while visuo-spatial working memory abilities were evaluated through the table version of the Radial Arm Maze (table-RAM) task. All outputs were analyzed with One-way ANOVAS or Kruskal-Wallis Tests to assess differences between Active and Sedentary children in both executive functioning and visuo-spatial working memory processes. RESULTS: The findings revealed that the Active group outperformed the sedentary group in inhibitory control (F1,23 = 4.99, p = 0.03*), cognitive flexibility (F1,23 = 5.77, p = 0.02*), spatial span (F1,23 = 4.40, p = 0.04*), and working memory errors (F1,23 = 8.59, p = 0.01**). Both spatial span and working memory errors are parameters closely associated with visuo-spatial working memory abilities. CONCLUSIONS: Although preliminary, these results offer evidence of a positive link between physical activity and cognitive functioning in children. This indicates the importance of promoting active behaviors, especially within educational environments.


Subject(s)
Executive Function , Exercise , Memory, Short-Term , Sedentary Behavior , Humans , Executive Function/physiology , Male , Child , Female , Cross-Sectional Studies , Memory, Short-Term/physiology , Exercise/physiology , Inhibition, Psychological , Space Perception/physiology , Cognition/physiology , Neuropsychological Tests , Spatial Memory/physiology
2.
Physiol Rep ; 12(9): e16024, 2024 May.
Article in English | MEDLINE | ID: mdl-38697946

ABSTRACT

We investigated the associations of the measures of arterial health with cognition in adolescents and whether physical activity (PA) or sedentary time (ST) confounds these associations. One hundred sixteen adolescents (71 boys) aged 15.9 ± 0.4 participated in the study. PA and ST were assessed using a combined accelerometer/heart rate monitor. Overall cognition was computed from the results of psychomotor function, attention, working memory, and paired-associate learning tests. Pulse wave velocity was measured by impedance cardiography, carotid intima-media thickness, and carotid artery distensibility by carotid ultrasonography. Systolic and diastolic blood pressure (SBP and DBP) were measured using an aneroid sphygmomanometer. SBP was inversely associated with overall cognition (standardized regression coefficient [ß] = -0.216, 95% confidence interval (CI) -0.406 to -0.027, p = 0.025). Pulse wave velocity (ß = -0.199, 95% CI -0.382 to -0.017, p = 0.033) was inversely associated with working memory task accuracy. SBP was directly associated with reaction time in the attention (ß = 0.256, 95% CI 0.069 to 0.443, p = 0.008) and errors in the paired-associate learning tasks (ß = 0.308, 95% CI 0.126 to 0.489, p = 0.001). Blood pressure was inversely associated with overall cognition. PA or ST did not confound the associations. Results suggest that preventing high blood pressure is important for promoting cognition in adolescents.


Subject(s)
Blood Pressure , Cognition , Pulse Wave Analysis , Humans , Adolescent , Male , Female , Cognition/physiology , Blood Pressure/physiology , Pulse Wave Analysis/methods , Memory, Short-Term/physiology , Sedentary Behavior , Heart Rate/physiology , Carotid Intima-Media Thickness , Attention/physiology , Exercise/physiology , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology
3.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700934

ABSTRACT

Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or 'iconic' memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.


Subject(s)
Memory, Short-Term , Models, Neurological , Humans , Memory, Short-Term/physiology , Visual Perception/physiology , Adult , Mental Recall/physiology , Male , Female , Young Adult
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38725291

ABSTRACT

A widely used psychotherapeutic treatment for post-traumatic stress disorder (PTSD) involves performing bilateral eye movement (EM) during trauma memory retrieval. However, how this treatment-described as eye movement desensitization and reprocessing (EMDR)-alleviates trauma-related symptoms is unclear. While conventional theories suggest that bilateral EM interferes with concurrently retrieved trauma memories by taxing the limited working memory resources, here, we propose that bilateral EM actually facilitates information processing. In two EEG experiments, we replicated the bilateral EM procedure of EMDR, having participants engaging in continuous bilateral EM or receiving bilateral sensory stimulation (BS) as a control while retrieving short- or long-term memory. During EM or BS, we presented bystander images or memory cues to probe neural representations of perceptual and memory information. Multivariate pattern analysis of the EEG signals revealed that bilateral EM enhanced neural representations of simultaneously processed perceptual and memory information. This enhancement was accompanied by heightened visual responses and increased neural excitability in the occipital region. Furthermore, bilateral EM increased information transmission from the occipital to the frontoparietal region, indicating facilitated information transition from low-level perceptual representation to high-level memory representation. These findings argue for theories that emphasize information facilitation rather than disruption in the EMDR treatment.


Subject(s)
Electroencephalography , Eye Movement Desensitization Reprocessing , Humans , Female , Male , Young Adult , Adult , Eye Movement Desensitization Reprocessing/methods , Eye Movements/physiology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/psychology , Visual Perception/physiology , Memory/physiology , Brain/physiology , Photic Stimulation/methods , Memory, Short-Term/physiology
5.
Sci Rep ; 14(1): 10377, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710784

ABSTRACT

This study investigated the development of spatiotemporal perceptual interactions in 5-to-7 years old children. Participants reproduced the temporal and spatial interval between sequentially presented visual stimuli. The time and spacing between stimuli were experimentally manipulated. In addition, cognitive capacities were assessed using neuropsychological tests. Results revealed that starting at 5 years old, children exhibited spatial biases in their time estimations and temporal biases in their spatial estimations, pointing at space-time interference. In line with developmental improvement of temporal and spatial abilities, these spatiotemporal biases decreased with age. Importantly, short-term memory capacity was a predictor of space-time interference pointing to shared cognitive mechanisms between time and space processing. Our results support the symmetrical hypothesis that proposes a common neurocognitive mechanism for processing time and space.


Subject(s)
Memory, Short-Term , Space Perception , Humans , Child, Preschool , Female , Child , Male , Space Perception/physiology , Memory, Short-Term/physiology , Time Perception/physiology , Child Development/physiology , Cognition/physiology , Neuropsychological Tests , Photic Stimulation/methods
6.
Trends Hear ; 28: 23312165241253653, 2024.
Article in English | MEDLINE | ID: mdl-38715401

ABSTRACT

This study aimed to preliminarily investigate the associations between performance on the integrated Digit-in-Noise Test (iDIN) and performance on measures of general cognition and working memory (WM). The study recruited 81 older adult hearing aid users between 60 and 95 years of age with bilateral moderate to severe hearing loss. The Chinese version of the Montreal Cognitive Assessment Basic (MoCA-BC) was used to screen older adults for mild cognitive impairment. Speech reception thresholds (SRTs) were measured using 2- to 5-digit sequences of the Mandarin iDIN. The differences in SRT between five-digit and two-digit sequences (SRT5-2), and between five-digit and three-digit sequences (SRT5-3), were used as indicators of memory performance. The results were compared to those from the Digit Span Test and Corsi Blocks Tapping Test, which evaluate WM and attention capacity. SRT5-2 and SRT5-3 demonstrated significant correlations with the three cognitive function tests (rs ranging from -.705 to -.528). Furthermore, SRT5-2 and SRT5-3 were significantly higher in participants who failed the MoCA-BC screening compared to those who passed. The findings show associations between performance on the iDIN and performance on memory tests. However, further validation and exploration are needed to fully establish its effectiveness and efficacy.


Subject(s)
Cognition , Cognitive Dysfunction , Hearing Aids , Memory, Short-Term , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Memory, Short-Term/physiology , Cognitive Dysfunction/diagnosis , Noise/adverse effects , Speech Perception/physiology , Speech Reception Threshold Test , Age Factors , Persons With Hearing Impairments/psychology , Persons With Hearing Impairments/rehabilitation , Hearing Loss/rehabilitation , Hearing Loss/diagnosis , Hearing Loss/psychology , Mental Status and Dementia Tests , Memory , Acoustic Stimulation , Predictive Value of Tests , Correction of Hearing Impairment/instrumentation , Auditory Threshold
7.
BMC Pediatr ; 24(1): 318, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720281

ABSTRACT

Reading learning disability (RLD) is characterized by a specific difficulty in learning to read that is not better explained by an intellectual disability, lack of instruction, psychosocial adversity, or a neurological disorder. According to the domain-general hypothesis, a working memory deficit is the primary problem. Working memory in this population has recently been linked to altered resting-state functional connectivity within the default mode network (DMN), salience network (SN), and frontoparietal network (FPN) compared to that in typically developing individuals. The main purpose of the present study was to compare the within-network functional connectivity of the DMN, SN, FPN, and reading network in two groups of children with RLD: a group with lower-than-average working memory (LWM) and a group with average working memory (AWM). All subjects underwent resting-state functional magnetic resonance imaging (fMRI), and data were analyzed from a network perspective using the network brain statistics framework. The results showed that the LWM group had significantly weaker connectivity in a network that involved brain regions in the DMN, SN, and FPN than the AWM group. Although there was no significant difference between groups in reading network in the present study, other studies have shown relationship of the connectivity of the angular gyrus, supramarginal gyrus, and inferior parietal lobe with the phonological process of reading. The results suggest that although there are significant differences in functional connectivity in the associated networks between children with LWM and AWM, the distinctive cognitive profile has no specific effect on the reading network.


Subject(s)
Dyslexia , Magnetic Resonance Imaging , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Child , Male , Female , Dyslexia/physiopathology , Dyslexia/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Reading , Case-Control Studies
8.
PLoS One ; 19(5): e0298116, 2024.
Article in English | MEDLINE | ID: mdl-38722850

ABSTRACT

Spatial navigation is a multi-faceted behaviour drawing on many different aspects of cognition. Visuospatial abilities, such as mental rotation and visuospatial working memory, in particular, may be key factors. A range of tests have been developed to assess visuospatial processing and memory, but how such tests relate to navigation ability remains unclear. This understanding is important to advance tests of navigation for disease monitoring in various disorders (e.g., Alzheimer's disease) where spatial impairment is an early symptom. Here, we report the use of an established mobile gaming app, Sea Hero Quest (SHQ), as a measure of navigation ability in a sample of young, predominantly female university students (N = 78; 20; female = 74.3%; mean age = 20.33 years). We used three separate tests of navigation embedded in SHQ: wayfinding, path integration and spatial memory in a radial arm maze. In the same participants, we also collected measures of mental rotation (Mental Rotation Test), visuospatial processing (Design Organization Test) and visuospatial working memory (Digital Corsi). We found few strong correlations across our measures. Being good at wayfinding in a virtual navigation test does not mean an individual will also be good at path integration, have a superior memory in a radial arm maze, or rate themself as having a strong sense of direction. However, we observed that participants who were good in the wayfinding task of SHQ tended to perform well on the three visuospatial tasks examined here, and to also use a landmark strategy in the radial maze task. These findings help clarify the associations between different abilities involved in spatial navigation.


Subject(s)
Spatial Navigation , Humans , Female , Spatial Navigation/physiology , Male , Young Adult , Adult , Memory, Short-Term/physiology , Spatial Memory/physiology , Maze Learning/physiology , Space Perception/physiology , Adolescent , Mobile Applications
9.
J Affect Disord ; 358: 309-317, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703905

ABSTRACT

BACKGROUND: Cumulative evidence has consistently shown that white matter (WM) disruption is associated with cognitive decline in geriatric depression. However, limited research has been conducted on the correlation between these lesions and cognitive performance in untreated young adults with major depressive disorder (MDD), particularly with the specific segmental alterations of the fibers. METHOD: Diffusion tensor images were performed on 60 first-episode, treatment-naïve young adult patients with MDD and 54 matched healthy controls (HCs). Automated fiber quantification was applied to calculate the tract profiles of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) to evaluate the WM microstructural organization. Correlation analysis was performed to find the associations between the diffusion properties and cognitive performance. RESULTS: Compared with HCs, patients with MDD exhibited predominantly different diffusion properties in bilateral uncinate fasciculus (UF), corticospinal tracts (CSTs), left superior longitudinal fasciculus and anterior thalamic radiation. The FA of the temporal cortex portion of right UF was positively correlated with working memory. The MD of the temporal component of left UF was negatively correlated with working memory and positively correlated with symptom severity. Additionally, a positive correlation between the MD of left CST and the psychomotor speed, negative correlation between the MD of left CST and the executive functions and complex attentional processes were observed. CONCLUSIONS: Our study validated the alterations in spatial localization of WM microstructure and its correlations with cognitive performance in first-episode, treatment-naïve young adults with MDD. This study added to the knowledge of the neuropathological basis of MDD.


Subject(s)
Depressive Disorder, Major , Diffusion Tensor Imaging , White Matter , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Young Adult , Adult , Cognition , Memory, Short-Term/physiology , Anisotropy , Neuropsychological Tests , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Case-Control Studies , Adolescent , Brain/pathology , Brain/diagnostic imaging
10.
Nat Commun ; 15(1): 4471, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796480

ABSTRACT

Working memory (WM) is the ability to maintain and manipulate information 'in mind'. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment. Here, we demonstrate distinct neuronal activation sequences (NASs) that encode remembered target locations in the virtual environment. This NAS code outperformed the persistent firing code for remembered locations during the virtual reality task, but not during a classical WM task using stationary stimuli and constraining eye movements. Finally, blocking NMDA receptors using low doses of ketamine deteriorated the NAS code and behavioral performance selectively during the WM task. These results reveal the versatility and adaptability of neural codes supporting working memory function in the primate lateral prefrontal cortex.


Subject(s)
Macaca mulatta , Memory, Short-Term , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Memory, Short-Term/physiology , Male , Neurons/physiology , Virtual Reality , Ketamine/pharmacology , Spatial Navigation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism
11.
Brain Behav ; 14(5): e3517, 2024 May.
Article in English | MEDLINE | ID: mdl-38702896

ABSTRACT

INTRODUCTION: Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS: We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS: Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS: These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.


Subject(s)
Alpha Rhythm , Attention , Memory, Short-Term , Music , Theta Rhythm , Humans , Memory, Short-Term/physiology , Attention/physiology , Male , Female , Child , Theta Rhythm/physiology , Alpha Rhythm/physiology , Auditory Perception/physiology , Electroencephalography , Visual Perception/physiology , Brain/physiology
12.
Brain Behav ; 14(5): e3527, 2024 May.
Article in English | MEDLINE | ID: mdl-38702898

ABSTRACT

PURPOSE: Sequential working memory is the ability to maintain and manipulate sequential information at a second time scale. Patients with progressive supranuclear palsy (PSP) or Parkinson's disease (PD) perform poorly in tests that require the flexible arrangement of thoughts or actions. This study investigated whether sequential working memory is differently impaired in patients with PSP versus PD. METHOD: Twenty-nine patients with PSP Richardson's syndrome (PSP-RS), 36 patients with PD, and 36 healthy controls (HC) completed 3 well-established neuropsychological tests, including digit span forward (DST-F), digit span backward (DST-B), and adaptive digit ordering tests (DOT-A). The DST-F required maintaining digit sequences, and the DST-B and DOT-A required maintaining and manipulating digit sequences. FINDING: The PSP-RS group scored lower than the PD and HC groups in the DST-B and DOT-A but not in the DST-F, indicating that the ability to manipulate sequences was impaired, but the maintenance ability was preserved in PSP-RS patients. Moreover, in PSP-RS, the DST-B score negatively correlated with the severity of motor symptoms. The actual levodopa dose positively correlated with the DST-B ordering cost (DST-F score vs. DST-B score). The PSP patients who took a greater dose of levodopa tended to have higher DST-B ordering cost. There was no effect of levodopa on DST-B or DOT-A in PD. CONCLUSION: These results suggested that the ability to manipulate sequence was already reduced in patients with PSP-RS and was worse than in patients with PD.


Subject(s)
Memory, Short-Term , Parkinson Disease , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/physiopathology , Supranuclear Palsy, Progressive/drug therapy , Male , Female , Aged , Parkinson Disease/physiopathology , Parkinson Disease/drug therapy , Middle Aged , Memory, Short-Term/physiology , Neuropsychological Tests , Levodopa/administration & dosage , Levodopa/pharmacology , Levodopa/therapeutic use
13.
PeerJ ; 12: e17331, 2024.
Article in English | MEDLINE | ID: mdl-38708349

ABSTRACT

Background: Studies on the effects of aerobic exercise on working memory (WM) have mainly concentrated on the overall effects, yet there is little knowledge on how moderate intensity aerobic exercise impacts the sub-processes of verbal WM (VWM) in adolescents. To address this gap, two experiments were conducted to explore the influence of aerobic exercise on the maintenance and updating sub-processes of VWM. Methods: In Experiment 1, a mixed experimental design of 2 (exercise habit: high vs. low) × 3 (memory load: 0-back vs. 1-back vs. 2-back) was used to compare VWM and its sub-processes in 40 adolescents. In Experiment 2, a 2 (group: intervention vs. control) × 3 (time point: pretest vs. 1st post-test vs. 18th post-test) × 3 (memory load: 0-back vs. 1-back vs. 2-back) mixed experimental design was used to investigate the acute and long-term effects of moderate intensity aerobic exercise on VWM and its sub-processes in 24 adolescents with low exercise habits. Results: The results of Experiment 1 showed that VWM performance and its sub-processes in the high exercise habit group were better than those in the low exercise habit group. The results of Experiment 2 showed that the effects of the long-term exercise intervention were superior to those of the acute exercise intervention, and both were superior to the pretest. Meanwhile, it was found that aerobic exercise intervention had a greater effect size on the updating sub-process of VWM. Conclusion: In conclusion, the results indicated that moderate intensity aerobic exercise could enhance the performance of VWM and its sub-processes in adolescents, and long-term intervention showed greater improvement effects compared to acute intervention, especially in the updating sub-process of VWM.


Subject(s)
Exercise , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Adolescent , Male , Female , Exercise/physiology , Exercise/psychology
14.
PeerJ ; 12: e17318, 2024.
Article in English | MEDLINE | ID: mdl-38708357

ABSTRACT

Background: Contextual cueing refers to the phenomenon in which individuals utilize frequently encountered environmental contexts, comprised of distractors, as cues to expedite a target search. Due to the conflict between the widespread occurrence of contextual cue transfer and the observed impact of changing the identity of distractors on contextual cue learning, the content of contextual cue representations remains contentious. Considering the independent nature of contextual cue learning and expression, our proposition is twofold: (1) Contextual cue representations are stimulus-specific, and (2) their expression is highly flexible. Methods: To validate the model, two experiments were conducted. Experiment 1 aimed to confirm the hypothesis that contextual cue representations are stimulus-specific. We manipulated the identity consistency of distractors within repeated scenes during contextual cue learning. Difficulty in contextual cue learning under the identity-changing condition would suggest the necessity of identity within contextual cue representation, indicating the stimulus-specific nature of these representations. Experiment 2 was designed to affirm the conclusion of Experiment 1 and explore the flexibility in the expression of contextual cue representations. This experiment comprised two phases: learning and testing. During the learning phase, participants were exposed to two sets of repeated scenes in different colors under two learning conditions: load and no-load. Working memory load was introduced to interfere with the expression to prevent it from becoming automatic. In the subsequent testing phase, the colors of the two scene sets were interchanged to impede retrieval based on identity. If both load and no-load conditions demonstrate similar levels of contextual cue effects during the testing phase, it implies the flexibility in the expression of contextual cue representations and confirms the conclusion of Experiment 1. Results: In Experiment 1, a notable contextual cue learning effect was observed under the identity-consistent condition (p = 0.001). However, this effect was not evident under the identity-changing condition (p = 0.286). This finding strongly supports the stimulus-specific nature of contextual cue representation. In Experiment 2, the contextual cueing effect appeared but did not show a significant difference between the two conditions (t(23) = 0.02, p = 0.987, BF10 = 0.215), indicating the cognitive system's ability to flexibly redefine retrieval cues. This adaptability aligns with our hypothesis and confirms the high flexibility in the expression process of contextual cue representations and confirms the conclusion of Experiment 1.


Subject(s)
Cues , Humans , Male , Female , Young Adult , Adult , Learning/physiology , Memory, Short-Term/physiology , Attention/physiology
15.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Article in English | MEDLINE | ID: mdl-38726799

ABSTRACT

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Subject(s)
Magnetoencephalography , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Adult , Male , Female , Young Adult , Markov Chains , Psychomotor Performance/physiology , Cerebral Cortex/physiology , Movement/physiology , Beta Rhythm/physiology
16.
PLoS One ; 19(5): e0299394, 2024.
Article in English | MEDLINE | ID: mdl-38743790

ABSTRACT

Working memory (WM) and inhibitory control (IC) play a crucial role in learning during early childhood. The literature suggests a non-linear developmental trajectory of executive functions (EFs) with varied results according to gender, usually attributed to environmental factors. However, there is insufficient and inconclusive data on whether this pattern is reproduced in the Latin American preschool population since most studies have been conducted in English-speaking, European, and Asian environments. Thus, objectively comparing children's executive performance across diverse international geographical contexts becomes challenging. This study aimed to conduct a cross-sectional analysis of the performance in WM and IC of 982 Ecuadorian preschoolers aged between 42 and 65 months (M = 53.71; SD = 5.714) and belonging to medium-high, medium, and low-medium socioeconomic strata. The participants consisted of 496 boys (M = 53.77; SD = 5.598) and 486 girls (M = 53.65; SD = 5.834), representing nine cities in Ecuador. To assess the effect of age and gender on performance in these two domains, the sample was divided into four 6-month age intervals. Two tests were administered to the participants, and a survey was conducted with 799 of their usual caregivers. Viewing the cross-sectional mean scores of the WM and IC tests as a temporal continuum reveals an upward trend in each age interval studied. Girls outperformed boys on the IC test, showing statistically significant differences in the earliest age interval. The gender differences in executive performance reported in the literature emphasize the need to explore the modulating effect of environmental variables on early childhood development. This information could offer valuable insights for adapting and optimizing cognitive and didactic strategies in early childhood tailored to the characteristics and needs of the preschool population.


Subject(s)
Child Development , Executive Function , Memory, Short-Term , Humans , Male , Female , Ecuador , Child, Preschool , Cross-Sectional Studies , Memory, Short-Term/physiology , Executive Function/physiology , Child Development/physiology , Inhibition, Psychological , Sex Factors , Age Factors
17.
Cognition ; 248: 105810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733867

ABSTRACT

Human observers often exhibit remarkable consistency in remembering specific visual details, such as certain face images. This phenomenon is commonly attributed to visual memorability, a collection of stimulus attributes that enhance the long-term retention of visual information. However, the exact contributions of visual memorability to visual memory formation remain elusive as these effects could emerge anywhere from early perceptual encoding to post-perceptual memory consolidation processes. To clarify this, we tested three key predictions from the hypothesis that visual memorability facilitates early perceptual encoding that supports the formation of visual short-term memory (VSTM) and the retention of visual long-term memory (VLTM). First, we examined whether memorability benefits in VSTM encoding manifest early, even within the constraints of a brief stimulus presentation (100-200 ms; Experiment 1). We achieved this by manipulating stimulus presentation duration in a VSTM change detection task using face images with high- or low-memorability while ensuring they were equally familiar to the participants. Second, we assessed whether this early memorability benefit increases the likelihood of VSTM retention, even with post-stimulus masking designed to interrupt post-perceptual VSTM consolidation processes (Experiment 2). Last, we investigated the durability of memorability benefits by manipulating memory retention intervals from seconds to 24 h (Experiment 3). Across experiments, our data suggest that visual memorability has an early impact on VSTM formation, persisting across variable retention intervals and predicting subsequent VLTM overnight. Combined, these findings highlight that visual memorability enhances visual memory within 100-200 ms following stimulus onset, resulting in robust memory traces resistant to post-perceptual interruption and long-term forgetting.


Subject(s)
Memory, Long-Term , Memory, Short-Term , Humans , Young Adult , Adult , Male , Female , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Visual Perception/physiology , Facial Recognition/physiology , Memory Consolidation/physiology , Adolescent
18.
Sci Rep ; 14(1): 11817, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783047

ABSTRACT

We assessed lifespan development of multitasking in a sample of 187 individuals aged 8-82 years. Participants performed a visuo-spatial working memory (VSWM) task together with either postural control or reaction time (RT) tasks. Using criterion-referenced testing we individually adjusted difficulty levels for the VSWM task to control for single-task differences. Age-differences in single-task performances followed U-shaped patterns with young adults outperforming children and older adults. Multitasking manipulations yielded robust performance decrements in VSWM, postural control and RT tasks. Presumably due to our adjustment of VSWM challenges, costs in this task were small and similar across age groups suggesting that age-differential costs found in earlier studies largely reflected differences already present during single-task performance. Age-differences in multitasking costs for concurrent tasks depended on specific combinations. For VSWM and RT task combinations increases in RT were the smallest for children but pronounced in adults highlighting the role of cognitive control processes. Stabilogram diffusion analysis of postural control demonstrated that long-term control mechanisms were affected by concurrent VSWM demands. This interference was pronounced in older adults supporting concepts of compensation or increased cognitive involvement in sensorimotor processes at older age. Our study demonstrates how a lifespan approach can delineate the explanatory scope of models of human multitasking.


Subject(s)
Memory, Short-Term , Reaction Time , Humans , Aged , Adult , Adolescent , Child , Female , Male , Aged, 80 and over , Reaction Time/physiology , Middle Aged , Young Adult , Memory, Short-Term/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Multitasking Behavior/physiology , Task Performance and Analysis , Aging/physiology , Longevity/physiology , Cognition/physiology
19.
Int J Psychophysiol ; 200: 112356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701899

ABSTRACT

Using the N-back task, we investigated how memory load influences the neural activity of the Chinese character cognitive subprocess (recognition, updating, and maintenance) in Mainland Chinese speakers. Twenty-seven participants completed the Chinese character N-back paradigm while having their event-related potentials recorded. The study employed time and frequency domain analyses of EEG data. Results showed that accuracy decreased and response times increased with larger N values. For ERPs, N2pc and P300 amplitudes decreased and SW amplitude increased with larger N values. For time frequency analyses, the desynchronization of alpha oscillations decreased after stimulus onset, but the synchronization of alpha oscillations increased during the maintenance phase. The results suggest that greater memory load is related to a decrease in cognitive resources during updating and an increase in cognitive resources during information maintenance. The results of a behavioral-ERP data structural equation model analysis showed that the ERP indicators in the maintenance phase predicted behavioral performance.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Male , Female , Young Adult , Adult , Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Memory, Short-Term/physiology , Psychomotor Performance/physiology , Recognition, Psychology/physiology , Reaction Time/physiology , Event-Related Potentials, P300/physiology
20.
Article in English | MEDLINE | ID: mdl-38722724

ABSTRACT

The olfactory system enables humans to smell different odors, which are closely related to emotions. The high temporal resolution and non-invasiveness of Electroencephalogram (EEG) make it suitable to objectively study human preferences for odors. Effectively learning the temporal dynamics and spatial information from EEG is crucial for detecting odor-induced emotional valence. In this paper, we propose a deep learning architecture called Temporal Attention with Spatial Autoencoder Network (TASA) for predicting odor-induced emotions using EEG. TASA consists of a filter-bank layer, a spatial encoder, a time segmentation layer, a Long Short-Term Memory (LSTM) module, a multi-head self-attention (MSA) layer, and a fully connected layer. We improve upon the previous work by utilizing a two-phase learning framework, using the autoencoder module to learn the spatial information among electrodes by reconstructing the given input with a latent representation in the spatial dimension, which aims to minimize information loss compared to spatial filtering with CNN. The second improvement is inspired by the continuous nature of the olfactory process; we propose to use LSTM-MSA in TASA to capture its temporal dynamics by learning the intercorrelation among the time segments of the EEG. TASA is evaluated on an existing olfactory EEG dataset and compared with several existing deep learning architectures to demonstrate its effectiveness in predicting olfactory-triggered emotional responses. Interpretability analyses with DeepLIFT also suggest that TASA learns spatial-spectral features that are relevant to olfactory-induced emotion recognition.


Subject(s)
Algorithms , Attention , Deep Learning , Electroencephalography , Emotions , Neural Networks, Computer , Odorants , Humans , Electroencephalography/methods , Emotions/physiology , Attention/physiology , Male , Adult , Female , Smell/physiology , Memory, Short-Term/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...